

phyCORE-Vybrid

System on Module and Carrier Board

Hardware Manual

Document No: L-783e_1 Product No: PCM-052/PCM-952 SOM PCB No: 1374.0 CB PCB No: 1375.2 Edition: January 8, 2013

A product of a PHYTEC Technology Holding Company

In this manual are descriptions for copyrighted products that are not explicitly indicated as such. The absence of the trademark ($^{\text{IM}}$) and copyright ($^{\text{C}}$) symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is believed to be entirely reliable. However, PHYTEC America LLC assumes no responsibility for any inaccuracies. PHYTEC America LLC neither gives any guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of this manual or its associated product. PHYTEC America LLC reserves the right to alter the information contained herein without prior notification and accepts no responsibility for any damages which might result.

Additionally, PHYTEC America LLC offers no guarantee nor accepts any liability for damages arising from the improper usage or improper installation of the hardware or software. PHYTEC America LLC further reserves the right to alter the layout and/or design of the hardware without prior notification and accepts no liability for doing so.

© Copyright 2011 PHYTEC America LLC, Bainbridge Island, WA.

Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and storage or processing in computer systems, in whole or in part - are reserved. No reproduction may occur without the express written consent from PHYTEC America LLC.

	EUROPE	NORTH AMERICA
Address:	PHYTEC Technologie Holding AG Robert-Koch-Str. 39 D-55129 Mainz GERMANY	PHYTEC America LLC 203 Parfitt Way SW, Suite G100 Bainbridge Island, WA 98110 USA
Ordering Information:	+49 (800) 0749832 sales@phytec.de	1 (800) 278-9913 sales@phytec.com
Technical Support:	+49 (6131) 9221-31 support@phytec.de	1 (800) 278-9913 support@phytec.com
Fax:	+49 (6131) 9221-33	1 (206) 780-9135
Website:	http://www.phytec.eu http://www.phytec.de	http://www.phytec.com

Table of Contents

List of Tables	i
List of Figures	/
Conventions, Abbreviations, and Acronyms	v
Part I: PCM-052/phyCORE-Vybrid System on Module 1 Introduction 1.1 phyCORE-Vybrid Features 1.2 Minimum Requirements to Operate the phyCORE-Vybrid 1.3 Block Diagram 1.4 View of the phyCORE-Vybrid 2 Pin Description	2 2 3 4 5
3 Jumpers. 16 3.1 Jumper Settings. 17 4 Power 18 4.1 Primary System Power (VDD_3V3). 19 4.2 DDR3 Power 20 4.3 Vybrid Processor Core Power 20	6 7 9 9
4.4 Backup Power (VBAT). 20 5 External RTC. 27 6 System Configuration and Booting 22 7 System Memory. 23 7.1 DDR3 SDRAM. 23 7.2 NAND Flash. 23 7.3 QSPI NOR Flash. 23 7.4 I ² C EEPROM. 23	1 2 3 3 3 3
7.4.1 Setting the EEPROM Lower Address Bits. 24 7.4.2 EEPROM Write Protection Control (J6). 24 7.5 Memory Model. 24 8 Serial Interfaces. 24 8.1 SCI / RS-232 25 8.2 Ethernet. 24 8.3 FlexCAN 26 9 Technical Specifications 27 10 Integrating and Handling the phyCORE-Vybrid. 29 10.1 Integrating the phyCORE-Vybrid. 29 10.2 Handling the phyCORE-Vybrid. 30 11 Component Placement 31	4455567990
Part II: PCM-952/phyCORE-Vybrid Carrier Board 33 12 Introduction 34 13 Overview of Peripherals 36 13.1 Connectors and Pin Headers 37 13.2 Buttons and Switches 39 13.2.1 System Reset Button 36 13.2.2 User Programmable Push Buttons 40 13.2.3 Boot Configuration Switch 40 13.2.4 SPI Flash Button 40 13.3.1 User Programmable LEDs 42	4 6 7 9 9 0 0 1

14	Jumpers	43
	phyCORE-Vybrid SOM Connectivity	
	Power	
	16.1 Wall Adapter Input	48
	16.2 VBAT	
	16.3 Current Measurement	
17	Ethernet	
	RS-232	
	CAN (Controller Area Network).	
	19.1 VCC_CAN	
20	USB.	
20	20.1 VCC_USB	
21	Display.	
2 '	21.1 Display Signals	
	21.2 TFT Display	
	21.3 PHYTEC Display Interface	
	21.4 Touch Screen	
	21.5 Light Sensor	
22	SD/MMC	
	Audio	
	JTAG	
	Trace	
	K20	
	Tamper	
21		10
Pai	rt III: PCM-957/GPIO Expansion Board	71
	Introduction	
	Analog Signal Mapping	
	Control Signal Mapping	
	Processor Signal Mapping	
	Power Signal Mapping.	
52		
Re	vision History	78

List of Tables

Conventions, Abbreviations, and Acronyms	
Table 1-1. Abbreviations and Acronyms Used in This Manual	V
Table 1-2. Types of Signals	vi
Part I: PCM-052/phyCORE-Vybrid System on Module	
Table 2-1. Pinout of the phyCORE-Connector X1, Row A	8
Table 2-2. Pinout of the phyCORE-Connector X1, Row B	
Table 2-3. Pinout of the phyCORE-Connector X1, Row C	12
Table 2-4. Pinout of the phyCORE-Connector X1, Row D	14
Table 3-1. SOM Jumper Settings	18
Table 6-1. Boot Device Selection	
Table 7-1. U6 EEPROM I ² C Address via J1 and J2	
Table 7-2. EEPROM Write-Protection States Via J6	24
Table 8-1. SCI RS-232 Signal Locations	25
Table 9-1. Technical Specifications	28
Table 9-2. Part information for phyCORE Connectors (X1)	28
Part II: PCM-952/phyCORE-Vybrid Carrier Board	33
Table 13-1. phyCORE-Vybrid Connectors	
Table 13-2. Button Descriptions	39
Table 13-3. Switch Settings (S5)	40
Table 13-4. Boot Configuration Settings	40
Table 13-5. LED Descriptions	41
Table 14-1. Jumper Settings and Descriptions	44
Table 16-1. Voltage Domains	47
Table 16-2. Power LEDs	47
Table 18-1. X10 Pin Descriptions	51
Table 18-2. X31 Pin Descriptions	51
Table 19-1. CAN0 Jumper Settings	53
Table 19-2. VCC_CAN Supply Configuration	
Table 21-1. TTL Display Pin Header (X24)	
Table 21-2. TTL Display Connector (X29)	
Table 21-3. PDI Connector (X30A) Signal Descriptions	
Table 21-4. PDI Connector (X30B) Signal Descriptions	
Table 23-1. Audio Connectors	
Table 24-1. JTAG Connector X16 Signals	
Table 24-2. JTAG Connector X19 Signals	65
Table 25-1. Trace Connector X22 Pins	66
Table 26-1. K20 Jumper Configurations	69
Table 27-1. Tamper Signals at Connector X21	
Part III: PCM-957/GPIO Expansion Board	71
Table 29-1. Analog Signal Map	
Table 30-1. Control Signal Map	
Table 31-1. Processor Signal Map	
Table 32-1. Power Signal Map	
Revision History	78
Table 33-1. Revision History	

List of Figures

Part I: PCM-052/phyCORE-Vybrid System on Module	
Fig. 1-1. phyCORE-Vybrid Block Diagram	
Fig. 1-2. Top View of the phyCORE-Vybrid (Controller Side).	5
Fig. 1-3. Bottom View of the phyCORE-Vybrid (Connector Side)	ô
Fig. 2-1. Pin-out of the phyCORE-Connector (Top View, with Cross Section Insert)	8
Fig. 3-1. Jumper Numbering	6
Fig. 3-2. Jumper Locations	7
Fig. 4-1. phyCORE-Vybrid Power Design 19	9
Fig. 9-1. phyCORE-Vybrid Physical Dimensions	7
Fig. 10-1. phyCORE-Vybrid Footprint	9
Fig. 11-1. phyCORE-Vybrid Component Placement: Top	1
Fig. 11-2. phyCORE-Vybrid Component Placement: Bottom 32	2
Part II: PCM-952/phyCORE-Vybrid Carrier Board	2
Fig. 12-1. phyCORE-Vybrid Carrier Board	
Fig. 13-1. Overview of Peripherals	
Fig. 13-2. phyCORE-Vybrid Connectors (Top)	
Fig. 13-3. phyCORE-Vybrid Connectors (Bottom)	
Fig. 13-4. Buttons and Switches.	
Fig. 13-5. LEDs	
Fig. 14-1. Jumper Locations and Default Settings	
Fig. 14-2. Jumper Numbering Scheme	
Fig. 15-1. phyCORE-Vybrid SOM Connectivity to the Carrier Board	
Fig. 16-1. Powering Scheme	
Fig. 17-1. Ethernet Interface Connectors	
Fig. 18-1. RS-232 Interface Connectors	
Fig. 18-2. DB-9 RS-232 Connectors P1A and P1B Pin Numbering	
Fig. 19-1. CAN Interface Connectors and Jumpers	
Fig. 20-1. USB Interface	
Fig. 21-1. Display	
Fig. 22-1. SD/MMC Interface	
Fig. 23-1. Audio Interface	
Fig. 24-1. JTAG Connectivity	
Fig. 25-1. Trace	
Fig. 26-1. K20	
Fig. 27-1. Tamper	
Part III: PCM-957/GPIO Expansion Board	1
Fig. 28-1. PCM-957/GPIO Expansion Board and Patch Field	
	-

Conventions, Abbreviations, and Acronyms

Conventions

The conventions used in this manual are as follows:

- Signals that are preceded by a "/" character are designated as active low signals. Their active state is when they are driven low, or are driving low; for example: /RESET.
- Tables show the default setting or jumper position in **bold**, teal text.
- Text in blue indicates a hyperlink, either internal or external to the document. Click these links to quickly jump to the applicable URL, part, chapter, table, or figure.
- References made to the *phyCORE-Connector* always refer to the high density Samtec connectors on the underside of the phyCORE-Vybrid System on Module.

Abbreviations and Acronyms

Many acronyms and abbreviations are used throughout this manual. Use the table below to navigate unfamiliar terms used in this document.

Abbreviation	Definition
BSP	Board Support Package (Software delivered with the Development Kit including an operating system (Windows or Linux) preinstalled on the module and Development Tools).
СВ	Carrier Board; used in reference to the PCM-952/phyCORE-Vybrid Carrier Board
DFF	D flip-flop
EMB	External memory bus
EMI	Electromagnetic Interference
GPI	General purpose input
GPIO	General purpose input and output
GPO	General purpose output
IRAM	Internal RAM; the internal static RAM on the Freescale VFx00 processor
J	Solder jumper; these types of jumpers require solder equipment to remove and place
JP	Solderless jumper; these types of jumpers can be removed and placed by hand with no special tools
PCB	Printed circuit board
PDI	PHYTEC Display Interface; defined to connect PHYTEC display adapter boards or custom adapters
PEB	PHYTEC Extension Board
PMIC	Power Management Integrated Circuit
PoE	Power over Ethernet
PoP	Package on Package
PoR	Power-on reset
RTC	Real-time clock
SMT	Surface mount technology
SOM	System on Module; used in reference to the PCM-052/phyCORE-Vybrid System on Module

Table 1-1. Abbreviations and Acronyms Used in This Manual

Abbreviation	Definition
Sx	User button Sx (S1, S2, etc.) used in reference to the available user buttons, or DIP switches on the Carrier Board
Sx_y	Switch y of DIP switch Sx; used in reference to the DIP switch on the Carrier Board
TRM	Technical Reference Manual
VBAT	SOM battery supply input

Different types of signals are brought out at the phyCORE-Connector. The following table lists the abbreviations used to specify the type of a signal.

Type of Signal	Description	Abbreviation
Power	Supply voltage	PWR
Ref-Voltage	Reference voltage	REF
USB-Power	USB voltage	USB
Input	Digital input	IN
Output	Digital output	OUT
Input with pull-up	Input with pull-up (jumper or open-collector output)	IPU
Input/output	Bidirectional input/output	10
5V Input with pull-down	5V tolerant input with pull-down	5V_PD
LVDS	Differential line pairs 100 Ohm LVDS Pegel	LVDS
Differential 90 Ohm	Differential line pairs 90 Ohm	DIFF90
Differential 100 Ohm	Differential line pairs 100 Ohm	DIFF100
Analog	Analog input or output	Analog

Preface

This phyCORE-Vybrid Hardware Manual describes the System on Module's design and functions. Precise specifications for the Freescale VFx00 processor can be found in the processor datasheet and/or user's manual.

In this hardware manual and in the schematics, active low signals are denoted by a "/" preceding the signal name, for example: /RD. A "0" represents a logic-zero or low-level signal, while a "1" represents a logic-one or high-level signal.

Declaration of Electro Magnetic Conformity of the PHYTEC phyCORE-Vybrid

PHYTEC System on Modules (SOMs) are designed for installation in electrical appliances or, combined with the PHYTEC Carrier Board, can be used as dedicated Evaluation Boards (for use as a test and prototype platform for hardware/software development) in laboratory environments.

CAUTION:

PHYTEC products lacking protective enclosures are subject to damage by ESD and, hence, may only be unpacked, handled or operated in environments in which sufficient precautionary measures have been taken in respect to ESD-dangers. It is also necessary that only appropriately trained personnel (such as electricians, technicians and engineers) handle and/or operate these products. Moreover, PHYTEC products should not be operated without protection circuitry if connections to the product's pin header rows are longer than 3 m.

PHYTEC products fulfill the norms of the European Union's Directive for Electro Magnetic Conformity only in accordance to the descriptions and rules of usage indicated in this hardware manual (particularly in respect to the pin header row connectors, power connector and serial interface to a host-PC).

Implementation of PHYTEC products into target devices, as well as user modifications and extensions of PHYTEC products, is subject to renewed establishment of conformity to, and certification of, Electro Magnetic Directives. Users should ensure conformance following any modifications to the products as well as implementation of the products into target systems.

The phyCORE-Vybrid is one of a series of PHYTEC System on Modules that can be populated with different controllers and, hence, offers various functions and configurations. PHYTEC supports a variety of 8-/16- and 32-bit controllers in two ways:

- 1. As the basis for Rapid Development Kits which serve as a reference and evaluation platform.
- 2. As insert-ready, fully functional phyCORE OEM modules, which can be embedded directly into the user's peripheral hardware design.

Implementation of an OEM-able SOM subassembly as the "core" of your embedded design allows you to focus on hardware peripherals and firmware without expending resources to "re-invent" microcontroller circuitry. Furthermore, much of the value of the phyCORE module lies in its layout and test.

Production-ready Board Support Packages (BSPs) and Design Services for our hardware further reduce development time and expenses. Take advantage of PHYTEC products to shorten time-to-market, reduce development costs, and avoid substantial design issues and risks. For more information go to:

http://www.phytec.com/services/design-services/index.html

Product Change Management

In addition to our HW and SW offerings, the buyer will receive a free obsolescence maintenance service for the HW provided when purchasing a PHYTEC SOM.

Our Product Change Management Team of developers is continuously processing all incoming PCN's (Product Change Notifications) from vendors and distributors concerning parts which are being used in our products. Possible impacts to the functionality of our products, due to changes of functionality or obsolesce of a certain part, are evaluated in order to take the right measures in purchasing or within our HW/SW design.

Our general philosophy here is: We never discontinue a product as long as there is demand for it. Therefore a set of methods has been established to fulfill our philosophy:

Avoidance strategies

- Avoid changes by evaluating longevity of a parts during design-in phase.
- Ensure availability of equivalent second source parts.
- · Maintain close contact with part vendors for awareness of roadmap strategies.

Change management in case of functional changes

- Avoid impacts on Product functionality by choosing equivalent replacement parts.
- Avoid impacts on Product functionality by compensating changes through HW redesign or backward compatibility

SW maintenance

• Provide early change notifications concerning functional relevant changes of our Products.

Change management in rare event of an obsolete and non replaceable part

- Ensure long term availability by stocking parts through last time buy management, according to product forecasts.
- Offer long term frame contract to customers.

We refrain from providing detailed, part-specific information within this manual, which is subject to changes, due to ongoing part maintenance for our products.

Part I: PCM-052/phyCORE-Vybrid System on Module

Part 1 of this three part manual provides detailed information on the phyCORE-Vybrid System on Module (SOM) designed for custom integration into customer applications.

The information in the following chapters is applicable to the 1374.0 PCB revision of the phyCORE-Vybrid SOM.

1 Introduction

The phyCORE-Vybrid belongs to PHYTEC's phyCORE System on Module (SOM) family. The phyCORE SOMs represent the continuous development of PHYTEC SOM technology. Like its mini-, micro-, and nanoMODUL predecessors, the phyCORE boards integrate all core elements of a microcontroller system on a subminiature board and are designed in a manner that ensures their easy expansion and embedding in peripheral hardware developments.

As independent research indicates that approximately 70% of all EMI (Electro Magnetic Interference) problems stem from insufficient supply voltage grounding of electronic components in high frequency environments, the phyCORE board design features an increased pin package. The increased pin package allows dedication of approximately 20% of all connector pins on the phyCORE boards to ground. This improves EMI and EMC characteristics and makes it easier to design complex applications meeting EMI and EMC guidelines using phyCORE boards even in high noise environments.

phyCORE boards achieve their small size through modern SMD technology and multi-layer design. In accordance with the complexity of the module, 0402-packaged SMD components and laser-drilled Microvias are used on the boards, providing phyCORE users with access to this cutting edge miniaturization technology for integration into their own design.

The phyCORE-Vybrid is a sub-miniature (41 x 51 mm) insert-ready SOM populated with Freescale FVx00 processor. Its universal design enables its insertion into a wide range of embedded applications. All processor signals and ports extend from the processor to high-density pitch (0.5 mm) connectors aligning two sides of the board. This allows the SOM to be plugged like a "big chip" into a target application.

Precise specifications for the processor populating the board can be found in the applicable processor user's manual and datasheet. The descriptions in this manual are based on the Freescale FVx00 processor. No description of compatible processor derivative functions is included, as such functions are not relevant for the basic functioning of the phyCORE-Vybrid.

1.1 phyCORE-Vybrid Features

- Insert-ready, sub-miniature (41 mm x 51 mm) System on Module (SOM) subassembly in low EMI design, achieved through advanced SMD technology
- Populated with the Freescale FVx00 Single (Cortex-A5) or heterogenous Dual Core (Cortex-A5 and Cortex-M4) processor
- Max. 500 MHz core clock frequency for the Cortex-A5, 167 MHz for the Cortex-M4
- Boot from NAND Flash or SPI Flash
- Controller signals and ports extend to two high-density (0.5 mm) Samtec connectors aligning two sides of the board, enabling it to be plugged like a "big chip" into target application
- Single supply voltage of 3.3 V (max.1 A)
- All controller required supplies generated on board
- Improved interference safety achieved through multi-layer PCB technology and dedicated ground pins
- 256 MB (up to 2 GB) on-board NAND Flash¹
- 128/256/512 MB DDR3 SDRAM ¹
- 4 kB (up to 32 kB) I2C EEPROM¹
- 32 MB (up to 128 MB) SPI Flash
- Two RS-232 two-signal (Tx/Rx) serial interfaces, or one RS-232 interface with hardware flow control, configured through software
- Dual USB OTG 2.0 High-Speed Controller with PHY

^{1.} The maximum memory size listed is as of the printing of this manual. Please contact PHYTEC for more information about additional, or new module configurations available.

- Two 10/100 MBit Ethernet interfaces with internal L2-Switch and IEEE1588 PTP for Realtime Ethernet (available as RMII TTL signals or 10/100 differential pairs)
- One I²C interface with SMBUS support
- Four Serial Peripheral Interfaces (SPI)
- Two Quad SPI (QSPI) supporting XIP
- Two FlexCAN interfaces with transceivers
- Display interface with 24 data bits
- I²S audio
- Two 12-bit digital to analog converter (DAC) outputs
- Two 10-channel, 12-bit analog to digital (ADC) inputs
- JTAG
- 16-bit Trace port
- Two active and two passive tamper security signals
- 4-bit Secure Digital Host interface (SD/MMC)
- Real-Time Clock
- -40 to 85 C operating temperature range

1.2 Minimum Requirements to Operate the phyCORE-Vybrid

Basic operation of the phyCORE-Vybrid requires a 3.3V +-5% supply voltage with at least 1.0A current capacity. Connect power and ground to the following pins on connector X1 to power the SOM:

3.3V: X1-1C, 2C, 1D, 2D **GND**: X1-3C, 3D, 7C, 7D

Please refer to Chapter 2 for information on additional GND pins located at the phyCORE-Connector X1.

CAUTION:

We recommend connecting all available 3.3V input pins to the power supply system on a custom carrier board housing the phyCORE-Vybrid and at least the matching number of GND pins neighboring the 3.3V pins. In addition, proper implementation of the phyCORE-Vybrid module into a target application also requires connecting all GND pins neighboring signals that are being used in the application circuitry. Please refer to Chapter 4 for more information.

1.3 Block Diagram

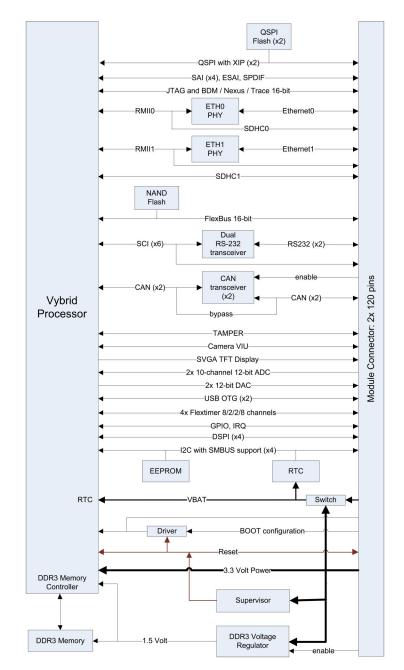


Fig. 1-1. phyCORE-Vybrid Block Diagram

1.4 View of the phyCORE-Vybrid

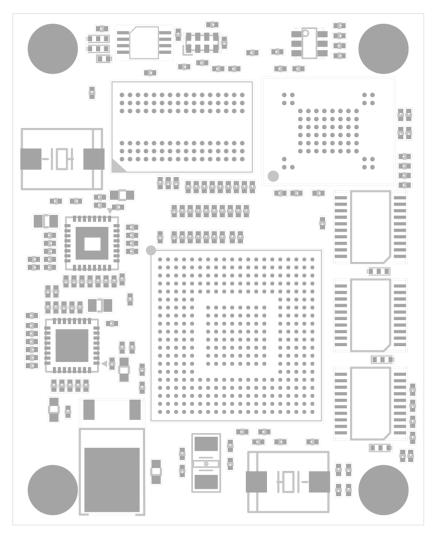


Fig. 1-2. Top View of the phyCORE-Vybrid (Controller Side)

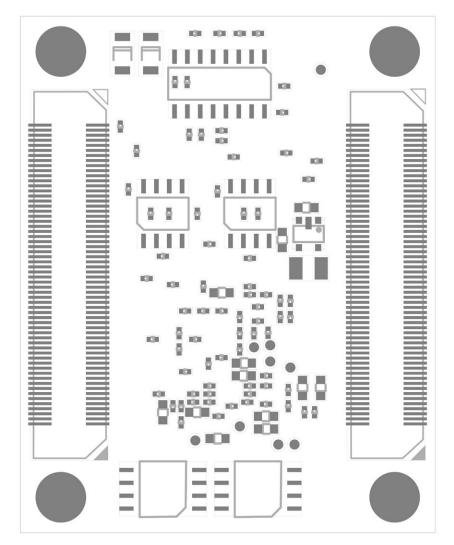


Fig. 1-3. Bottom View of the phyCORE-Vybrid (Connector Side)

2 Pin Description

Please note that all module connections are not to exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller manuals/datasheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading through connected peripherals.

All controller signals extend to surface mount technology (SMT) connectors (0.5 mm) lining two sides of the module (referred to as the phyCORE-Connector). This allows the phyCORE-Vybrid to be plugged into any target application like a "big chip."

The numbering scheme for the phyCORE-Connector is based on a two dimensional matrix in which column positions are identified by a letter and row position by a number. Pin 1A, for example, is always located in the upper left hand corner of the matrix. The pin numbering values increase moving down on the board. Lettering of the pin connector rows progresses alphabetically from left to right (refer to Figure 2-1).

The numbered matrix can be aligned with the phyCORE-Vybrid (viewed from above; phyCORE-Connector pointing down) or with the socket of the corresponding phyCORE Carrier Board/user target circuitry. The upper left-hand corner of the numbered matrix (pin 1A) is thus covered with the corner of the phyCORE-Vybrid marked with a number 1. The numbering scheme is always in relation to the PCB as viewed from above, even if all connector contacts extend to the bottom of the module.

The numbering scheme is thus consistent for both the module's phyCORE-Connector as well as mating connectors on the phyCORE Carrier Board or target hardware, thereby considerably reducing the risk of pin identification errors.

Since the pins are exactly defined according to the numbered matrix previously described, the phyCORE-Connector is usually assigned a single designator for its position (X2 for example). In this manner the phyCORE-Connector comprises a single, logical unit regardless of the fact that it could consist of more than one physical socketed connector. The location of row 1 on the board is marked by a number 1 on the PCB to allow easy identification.

Figure 2-1 illustrates the numbered matrix system. It shows a phyCORE-Vybrid with SMT phyCORE-Connectors on its underside (defined as dotted lines) mounted on a Carrier Board. In order to facilitate understanding of the pin assignment scheme, the diagram presents a cross-view of the phyCORE module showing these phyCORE-Connectors mounted on the underside of the module's PCB.

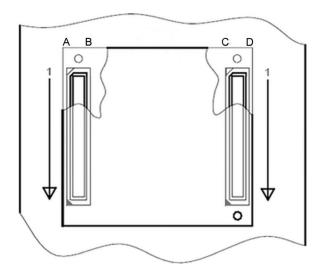


Fig. 2-1. Pin-out of the phyCORE-Connector (Top View, with Cross Section Insert)

The following tables provide an overview of the pinouts of the phyCORE-Connector with signal names and descriptions specific to the phyCORE-Vybrid. It also provides the appropriate signal level interface voltages listed in the SL (Signal Level) column and the signal direction.

CAUTION:

Most of the controller pins have multiple functions. Because most of these pins are connected directly to the phyCORE-Connector the functions are also available there. Signal names and descriptions below are in regard to the specification of the phyCORE-Vybrid and the functions defined therein. Please refer to the VFx00 datasheet or TRM for more information about alternative functions. In order to utilize a specific pin's alternative function the corresponding registers must be configured within the appropriate driver of the BSP. To support all features of the phyCORE-Vybrid Carrier Board a few changes have been made in the BSP delivered with the module.

Pin#	Signal	Туре	SL	Description
1A	MCU_PTB0	IO	VDD_3V3	Display brightness control
2A	GND	-	-	Ground 0 V
3A	MCU_PTB4	IO	VDD_3V3	SCI1_TX serial transmit signal
4A	MCU_PTB5	IO	VDD_3V3	SCI1_RX serial receive signal
5A	MCU_PTB6	Ю	VDD_3V3	SCI22_TX serial transmit signal, or SCI1_RTS request to send
6A	MCU_PTB7	Ю	VDD_3V3	SCI2_RX serial receive signal, or SCI1_CTS clear to send
7A	GND	-	-	Ground 0 V
8A	MCU_PTB12	IO	VDD_3V3	Display Up/Down control
9A	MCU_PTB13	Ю	VDD_3V3	Trace control

Table 2-1. Pinout of the phyCORE-Connector X1, Row A

Pin#	Signal	Туре	SL	Description
10A	CAN_EN	IPU	VDD_3V3	Drive low to disable the CAN transceivers on the SOM.
11A	RTC_INTn	OUT	VDD_3V3	External Real Time Clock interrupt/alarm
12A	GND	-	-	Ground 0 V
13A	MCU_PTB21	Ю	VDD_3V3	SPI0 Master-In-Slave-Out (MISO)
14A	MCU_PTB22	IO	VDD_3V3	SPI0 clock
15A	MCU_PTB23	Ю	VDD_3V3	GPIO
16A	MCU_PTB24	IO	VDD_3V3	NAND Flash write enable
17A	GND	-	-	Ground 0 V
18A	MCU_PTD16	Ю	VDD_3V3	NAND Flash IO0
19A	MCU_PTD17	IO	VDD_3V3	NAND Flash IO1
20A	MCU_PTD18	IO	VDD_3V3	NAND Flash IO2
21A	MCU_PTD19	Ю	VDD_3V3	NAND Flash IO3
22A	GND	-	-	Ground 0 V
23A	MCU_PTD24	IO	VDD_3V3	NAND Flash IO8
24A	MCU_PTD25	Ю	VDD_3V3	NAND Flash IO9
25A	MCU_PTD26	Ю	VDD_3V3	NAND Flash IO10
26A	MCU_PTD27	Ю	VDD_3V3	NAND Flash IO11
27A	GND	-	-	Ground 0 V
28A	MCU_PTC26	IO	VDD_3V3	NAND Flash Ready / Busy
29A	MCU_PTC27	IO	VDD_3V3	NAND Flash address latch enable
30A	MCU_PTC28	IO	VDD_3V3	NAND Flash command latch enable
31A	MCU_PTC29	-	VDD_3V3	GPIO
32A	GND	-	-	Ground 0 V
33A	MCU_PTC30	IO	VDD_3V3	GPIO
34A	MCU_PTD0	OUT	VDD_3V3	QSPI0_A clock
35A	MCU_PTD1	10	VDD_3V3	QSPI0_A chip select
36A	MCU_PTD2	10	VDD_3V3	QSPI0_A hold
37A	GND	-	-	Ground 0 V
38A	MCU_PTD3	10	VDD_3V3	QSPI0_A write-protect
39A	MCU_PTD4	10	VDD_3V3	QSPI0_A data 1
40A	MCU_PTD5	10	VDD_3V3	QSPI0_A data 0
41A	MCU_PTD6	10	VDD_3V3	SD Card Detect (SDCD)
42A	GND	-	-	Ground 0 V
43A	MCU_PTC4	IO	VDD_3V3	RMII0 Receive Data 0
44A	MCU_PTC5	IO	VDD_3V3	RMII0 Receive Error
45A	MCU_PTC6	IO	VDD_3V3	RMII0 Transmit Data 1
46A	MCU_PTC7	IO	VDD_3V3	RMII0 Transmit Data 0
47A	GND	-	-	Ground 0 V

Pin#	Signal	Туре	SL	Description
48A	MCU_PTC13	IO	VDD_3V3	RMII1 Receive Data 0
49A	MCU_PTC14	10	VDD_3V3	RMII1 Receive Error
50A	MCU_PTC15	10	VDD_3V3	RMII1 Transmit Data 1
51A	MCU_PTC16	10		RMII1 Transmit Data 0
52A	GND	-	-	Ground 0 V
53A	VADCSE0	Analog	VDD_3V3	Analog signal
54A	VADCSE1	Analog	VDD_3V3	Analog signal
55A	VADCSE2	Analog	VDD_3V3	Analog signal
56A	VADCSE3	Analog	VDD_3V3	Analog signal
57A	GND	-	-	Ground 0 V
58A	DACO0	Analog	VDD_3V3	Analog signal
59A	DACO1	Analog	VDD_3V3	Analog signal
60A	VREFH_ADC	REF	VDD_3V3	Analog reference voltage

 Table 2-1. Pinout of the phyCORE-Connector X1, Row A (Continued)

Table 2-2. Pinout of the phyCORE-Connector X1, Row B

Pin#	Signal	Туре	SL	Description
1B	MCU_PTB1	IO	VDD_3V3	Audio I ² S_DOUT
2B	MCU_PTB2	IO	VDD_3V3	GPIO and RCON31 boot signal, must be low during system reset
3B	MCU_PTB3	IO	VDD_3V3	Display enable control signal
4B	GND	-	-	Ground 0 V
5B	MCU_PTB8	IO	VDD_3V3	GPIO
6B	MCU_PTB9	IO	VDD_3V3	GPIO
7B	MCU_PTB10	IO	VDD_3V3	GPIO
8B	MCU_PTB11	10	VDD_3V3	Audio codec master clock
9B	GND	-	-	Ground 0 V
10B	NF_WPn	IPU	VDD_3V3	NAND Flash write-protect
11B	MCU_PTB18	IO	VDD_3V3	GPIO
12B	MCU_PTB19	IO	VDD_3V3	GPIO
13B	MCU_PTB20	-	-	SPI0 Master-Out-Slave-In (MOSI)
14B	GND	-	-	Ground 0 V
15B	MCU_PTB25	IO	VDD_3V3	NAND Flash chip enable
16B	MCU_PTB26	IO	VDD_3V3	GPIO
17B	MCU_PTB27	IO	VDD_3V3	NAND Flash read enable
18B	MCU_PTB28	IO	VDD_3V3	GPIO
19B	GND	-	-	Ground 0 V
20B	MCU_PTD20	IO	VDD_3V3	NAND Flash IO4

Pin#	Signal	Туре	SL	Description
21B	MCU_PTD21	IO	VDD_3V3	NAND Flash IO5
22B	MCU_PTD22	IO	VDD_3V3	NAND Flash IO6
23B	MCU_PTD23	IO	VDD_3V3	NAND Flash IO7
24B	GND	-	-	Ground 0 V
25B	MCU_PTD28	IO	VDD_3V3	NAND Flash IO12
26B	MCU_PTD29	IO	VDD_3V3	NAND Flash IO13
27B	MCU_PTD30	IO	VDD_3V3	NAND Flash IO14
28B	MCU_PTD31	IO	VDD_3V3	NAND Flash IO15
29B	GND	-	-	Ground 0 V
30B	MCU_PTC31	IO	VDD_3V3	GPIO
31B	MCU_PTD7	IO	VDD_3V3	QSPI0_B clock
32B	MCU_PTD8	IO	VDD_3V3	QSPI0_B chip select
33B	MCU_PTD9	IO	VDD_3V3	QSPI0_B data 3
34B	GND	-	-	Ground 0 V
35B	MCU_PTD10	IO	VDD_3V3	QSPI0_B data 2
36B	MCU_PTD11	IO	VDD_3V3	QSPI0_B data 1
37B	MCU_PTD12	IO	VDD_3V3	QSPI0_B data 0
38B	MCU_PTD13	IO	VDD_3V3	GPIO
39B	GND	-	-	Ground 0 V
40B	MCU_PTC0	IO	VDD_3V3	RMII0 Management Data Clock (MDC)
41B	MCU_PTC1	IO	VDD_3V3	RMII0 Management Data Input/Output (MDIO)
42B	MCU_PTC2	IO	VDD_3V3	RMII0 Carrier Sense (CRS)
43B	MCU_PTC3	IO	VDD_3V3	RMII0 Receive Data 1
44B	GND	-	-	Ground 0 V
45B	MCU_PTC8	IO	VDD_3V3	RMII0 Transmit Enable
46B	MCU_PTC9	IO	VDD_3V3	RMII1 Management Data Clock (MDC)
47B	MCU_PTC10	IO	VDD_3V3	RMII1 Management Data Input/Output (MDIO)
48B	MCU_PTC11	IO	VDD_3V3	RMII1 Carrier Sense (CRS)
49B	GND	-	-	Ground 0 V
50B	MCU_PTC12	IO	VDD_3V3	RMII1 Receive Data 1
51B	MCU_PTC17	IO	VDD_3V3	RMII1 Transmit Enable
52B	MCU_PTA6	10	VDD_3V3	RMII1 clock
53B	MCU_PTA7	10	VDD_3V3	SD write-protect
54B	GND	-	-	Ground 0 V
55B	ADC0SE8	Analog	VDD_3V3	Analog signal
56B	ADC0SE9	Analog	VDD_3V3	Analog signal
57B	ADC1SE8	Analog	VDD_3V3	Analog signal

 Table 2-2. Pinout of the phyCORE-Connector X1, Row B (Continued)

VREFL_ADC

60B

	Signal	Туре	SL	Description
58B	ADC1SE9	Analog	VDD_3V3	Analog signal
59B	GND	-	-	Ground 0 V

Analog reference voltage

Table 2-2. Pinout of the phyCORE-Connector X1, Row B (Continued)

VDD_3V3

Table 2-3. Pinout of the phyCORE-Connector X1, Row C

REF

Pin#	Signal	Туре	SL	Description
C1	VDD_3V3	PWR	VDD_3V3	3.3 V supply voltage
C2	VDD_3V3	PWR	VDD_3V3	3.3 V supply voltage
C3	GND	-	-	Ground 0 V
C4	VBAT	PWR	VBAT	3.0 V backup voltage for the Real-Time Clock
C5	RESETn	10	VDD_3V3	System reset
C6	VDD_1V5_EN	IN	VDD_3V3	RESERVED
C7	GND	-	-	Ground 0 V
C8	SCI1_TX_RS232	OUT	VDD_3V3 or RS232	MCU_PTB4 or RS232_1 Tx from transceiver U15 depending on SOM configuration.
C9	SCI1_RX_RS232	IN	VDD_3V3 or RS232	MCU_PTB5 or RS232_1 Rx from transceiver U15 depending on SOM configuration.
C10	SCI2_TX_RS232	OUT	VDD_3V3 or RS232	MCU_PTB6 or RS232_2 Tx from transceiver U15 depending on SOM configuration.
C11	SCI2_RX_RS232	IN	VDD_3V3 or RS232	MCU_PTB7 or RS232_2 Rx from transceiver U15 depending on SOM configuration.
C12	GND	-	-	Ground 0 V
C13	CAN0_HI	Ю	VDD_3V3 or CAN	MCU_PTB15 or CAN0 HI from transceiver U13 depending on SOM configuration.
C14	CAN0_LO	Ю	VDD_3V3 or CAN	MCU_PTB14 or CAN0 LO from transceiver U13 depending on SOM configuration.
C15	CAN1_HI	Ю	VDD_3V3 or CAN	MCU_PTB17 or CAN1 HI from transceiver U14 depending on SOM configuration.
C16	CAN1_LO	Ю	VDD_3V3 or CAN	MCU_PTB16 or CAN1 LO from transceiver U14 depending on SOM configuration.
C17	GND	-	-	Ground 0 V
C18	VBUS_USB0	USB	VBUS_USB0	5.0 V USB0 VBUS supply
C19	USB0_VBUS_DETECT	IN	5V_PD	Detect signal for the USB0 VBUS supply
C20	USB0_DP	DIFF90	VDD_3V3	USB0 data plus
C21	USB0_DM	DIFF90	VDD_3V3	USB0 data minus
C22	GND	-	-	Ground 0 V
C23	ETH0_RXM	LVDS	VDD_3V3	Ethernet0 receive data minus
C24	ETH0_RXP	LVDS	VDD_3V3	Ethernet0 receive data plus
C25	ETH0_TXM	LVDS	VDD_3V3	Ethernet0 transmit data minus
C26	ETH0_TXP	LVDS	VDD_3V3	Ethernet0 transmit data plus

Pin#	Signal	Туре	SL	Description
C27	GND	-	-	Ground 0 V
C28	MCU_PTA8	10	VDD_3V3	JTAG Chain TCLK
C29	MCU_PTA9	10	VDD_3V3	JTAG Chain TDI
C30	MCU_PTA10	10	VDD_3V3	JTAG Chain TDO
C31	MCU_PTA11	10	VDD_3V3	JTAG Chain TMS
C32	GND	-	-	Ground 0 V
C33	MCU_PTA17	Ю	VDD_3V3	Trace data 1
C34	MCU_PTA18	Ю	VDD_3V3	Trace data 2
C35	MCU_PTA19	Ю	VDD_3V3	Trace data 3
C36	MCU_PTA20	Ю	VDD_3V3	Trace data 4
C37	GND	-	-	Ground 0 V
C38	MCU_PTA25	10	VDD_3V3	Trace data 9
C39	MCU_PTA26	10	VDD_3V3	Trace data 10
C40	MCU_PTA27	10	VDD_3V3	Trace data 11
C41	MCU_PTA28	10	VDD_3V3	Trace data 12
C42	GND	-	-	Ground 0 V
C43	MCU_PTE1	OUT	VDD_3V3	Display vertical sync
C44	MCU_PTE2	OUT	VDD_3V3	Display clock
C45	MCU_PTE3	Ю	VDD_3V3	GPIO
C46	MCU_PTE4	OUT	VDD_3V3	Display enable
C47	GND	-	-	Ground 0 V
C48	MCU_PTE9	OUT	VDD_3V3	Display red 4
C49	MCU_PTE10	OUT	VDD_3V3	Display red 5
C50	MCU_PTE11	OUT	VDD_3V3	Display red 6
C51	MCU_PTE12	OUT	VDD_3V3	Display red 7
C52	GND	-	-	Ground 0 V
C53	MCU_PTE17	OUT	VDD_3V3	Display green 4
C54	MCU_PTE18	OUT	VDD_3V3	Display green 5
C55	MCU_PTE19	OUT	VDD_3V3	Display green 6
C56	MCU_PTE20	OUT	VDD_3V3	Display green 7
C57	GND	-	-	Ground 0 V
C58	MCU_PTE25	OUT	VDD_3V3	Display blue 4
C59	MCU_PTE26	OUT	VDD_3V3	Display blue 5
C60	MCU_PTE27	OUT	VDD_3V3	Display blue 6

Table 2-3. Pinout of the phyCORE-Connector X1, Row C (Continued)

Pin#	Signal	Туре	SL	Description
D1	VDD_3V3	PWR	VDD_3V3	3.3 V power input
D2	VDD_3V3	PWR	VDD_3V3	3.3 V power input
D3	GND	-	-	Ground 0 V
D4	BOOTMOD0	IN	VDD_3V3	Boot configuration input
D5	BOOTMOD1	IN	VDD_3V3	Boot configuration input
D6	RCON5	IN	VDD_3V3	Boot configuration input
D7	RCON6	IN	VDD_3V3	Boot configuration input
D8	RCON7	IN	VDD_3V3	Boot configuration input
D9	GND	-	-	Ground 0 V
D10	EXT_TAMPER0	IN	VDD_3V3	Vybrid physical security tamper detection
D11	EXT_TAMPER1	IN	VDD_3V3	Vybrid physical security tamper detection
D12	EXT_TAMPER2	10	VDD_3V3	Vybrid physical security tamper detection
D13	EXT_TAMPER3	Ю	VDD_3V3	Vybrid physical security tamper detection
D14	GND	-	-	Ground 0 V
D15	VBUS_USB1	USB	VBUS_USB1	5.0 V USB1 VBUS supply
D16	USB1_VBUS_D ETECT	IN	5V_PD	Detect signal for USB1 VBUS supply
D17	USB1_DP	DIFF90	VDD_3V3	USB1 data plus
D18	USB1_DM	DIFF90	VDD_3V3	USB1 data mins
D19	GND	-	-	Ground 0 V
D20	I2C_SCL	OUT	VDD_3V3	I2C2 clock
D21	I2C_SDA	10	VDD_3V3	I2C2 data
D22	ETH0_LED0	OUT	VDD_3V3	Ethernet0 LED 0 control
D23	ETH0_LED1	OUT	VDD_3V3	Ethernet0 LED 1 control
D24	GND	-	-	Ground 0 V
D25	ETH1_RXM	LVDS	VDD_3V3	Ethernet1 receive data minus
D26	ETH1_RXP	LVDS	VDD_3V3	Ethernet1 receive data plus
D27	ETH1_TXM	LVDS	VDD_3V3	Ethernet1 transmit data minus
D28	ETH1_TXP	LVDS	VDD_3V3	Ethernet1 transmit data plus
D29	GND	-	-	Ground 0 V
D30	ETH1_LED0	OUT	VDD_3V3	Ethernet1 LED 0
D31	ETH1_LED1	OUT	VDD_3V3	Ethernet1 LED 1
D32	MCU_PTA12	Ю	VDD_3V3	Trace clock
D33	MCU_PTA16	IO	VDD_3V3	Trace Data 0
D34	GND	-	-	Ground 0 V
D35	MCU_PTA21	Ю	VDD_3V3	Trace data 5
D36	MCU_PTA22	IO	VDD_3V3	Trace data 6

 Table 2-4.
 Pinout of the phyCORE-Connector X1, Row D

_				
Pin#	Signal	Туре	SL	Description
D37	MCU_PTA23	IO	VDD_3V3	Trace data 7
D38	MCU_PTA24	10	VDD_3V3	Trace data 8
D39	GND	-	-	Ground 0 V
D40	MCU_PTA29	10	VDD_3V3	Trace data 13
D41	MCU_PTA30	10	VDD_3V3	Trace data 14
D42	MCU_PTA31	IO	VDD_3V3	Trace data 15
D43	MCU_PTE0	OUT	VDD_3V3	Display horizontal sync
D44	GND	-	-	Ground 0 V
D45	MCU_PTE5	OUT	VDD_3V3	Display red 0
D46	MCU_PTE6	OUT	VDD_3V3	Display red 1
D47	MCU_PTE7	OUT	VDD_3V3	Display red 2
D48	MCU_PTE8	OUT	VDD_3V3	Display red 3
D49	GND	-	-	Ground 0 V
D50	MCU_PTE13	OUT	VDD_3V3	Display green 0
D51	MCU_PTE14	OUT	VDD_3V3	Display green 1
D52	MCU_PTE15	OUT	VDD_3V3	Display green 2
D53	MCU_PTE16	OUT	VDD_3V3	Display green 3
D54	GND	-	-	Ground 0 V
D55	MCU_PTE21	OUT	VDD_3V3	Display blue 0
D56	MCU_PTE22	OUT	VDD_3V3	Display blue 1
D57	MCU_PTE23	OUT	VDD_3V3	Display blue 2
D58	MCU_PTE24	OUT	VDD_3V3	Display blue 3
D59	GND	-	-	Ground 0 V
D60	MCU_PTE28	OUT	VDD_3V3	Display blue 7

 Table 2-4.
 Pinout of the phyCORE-Connector X1, Row D (Continued)

3 Jumpers

For configuration purposes the phyCORE-Vybrid has three solder jumpers which have been installed prior to delivery. Figure 3-1 illustrates the jumper pad numbering scheme for reference when altering jumper settings on the board. Three and four position jumpers have pin 1 marked with a GREEN pad. The beveled edge in the silk-screen around the jumper indicates the location of pin 1. Figure 3-2 shows the location of the jumpers.

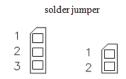


Fig. 3-1. Jumper Numbering

3.1 Jumper Settings

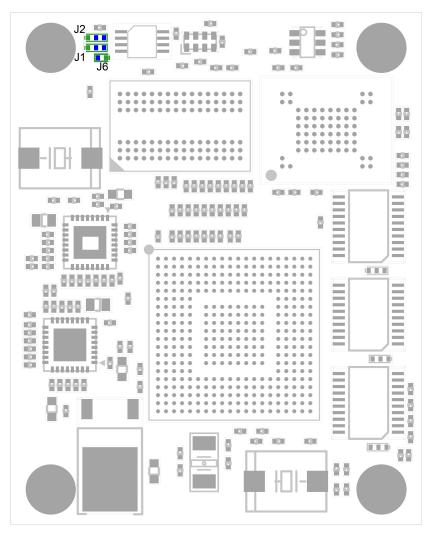
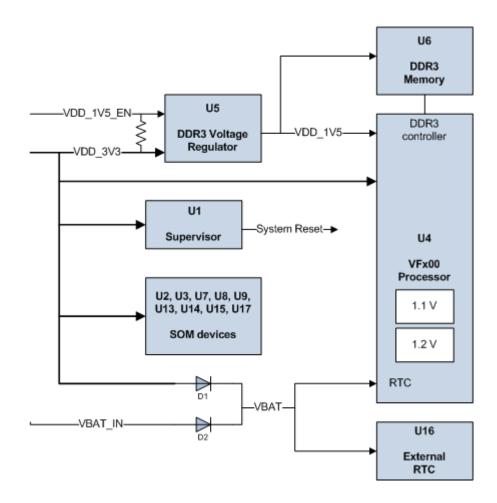


Fig. 3-2. Jumper Locations

Table 3-1 provides a functional summary of solder jumpers that can be changed to adapt the phyCORE-Vybrid for specific needs. It shows default positions, possible alternative positions, and functions. A detailed description of each solder jumper can be found in the applicable chapter listed in the table.

Some jumpers designed into the schematic are not listed in this manual. These jumpers should not be modified as they are for special purposes outside of normal functional configuration.

If manual jumper modification is required, pay special attention to the "TYPE" column in Table 3-1 ensuring the use of the correct jumper type (0 Ohms, 10k Ohms, etc.). All jumpers are 0805 package or 0402 package with a 1/8W or better power rating.


A detailed description of each solder jumper can be found in the applicable chapter listed in the table.

Jumper	Setting	Description	Туре	Chapter
J1	1+2	Sets EEPROM lower address bit A1 = 1	0R (0402)	7.4.1
	2+3	Sets EEPROM lower address bit A1 = 0		
J2	1+2	Sets EEPROM lower address bit A2 = 1	0R (0402)	7.4.1
	2+3	Sets EEPROM lower address bit A2 = 0		
J6	1+2	The EEPROM is writeable	0R (0402)	7.4.2
	OPEN	The EEPROM is write-protected		

Table 3-1. SOM Jumper Settings

4 Power

The phyCORE-Vybrid operates off of a single 3.3V system power supply. An overview of the power design is shown in the figure below.

Fig. 4-1. phyCORE-Vybrid Power Design

The following sections of this chapter describe each component of the power design of the phyCORE-Vybrid.

CAUTION:

As a general design rule we recommend connecting all GND pins neighboring signals which are being used in the application circuitry. For maximum EMI performance all GND pins should be connected to a solid ground plane.

4.1 Primary System Power (VDD_3V3)

The phyCORE-Vybrid operates off of a primary voltage supply with a nominal value of 3.3V. An on-board switching regulator at U5 generates the 1.5V voltage supply required by the DDR3 memory (U6). Voltage regulators integrated in the Vybrid processor generate the 1.1V and 1.2V supplies needed by the Vybrid processor core.

An optional 3V backup battery voltage VBAT can be supplied for the external Real-Time Clock (U16) and the Real-Time Clock which is integrated in the VFx00. All of the on-board components except for the DDR3 memory interface and the RTCs are powered directly from the primary 3.3V supplied to the SOM.

The phyCORE-Vybrid includes a voltage supervisor at U1 which asserts the system reset when the voltage of the primary system power is below 3V. For proper operation the phyCORE-Vybrid must be supplied with a voltage source of $3.3V \pm 5\%$ with at least 1.0 A capacity at the VDD_3V3 pins on the phyCORE-Connector X1. A matching number of GND pins should also be used. Connect power and ground to the following pins on connector X1 to power the SOM:

3.3V: X1-1C, 2C, 1D, 2D **GND**: X1-3C, 3D, 7C, 7D

Please refer to Table 2-3 for the location of additional GND pins located on the phyCORE-Connector X1.

4.2 DDR3 Power

The 3.3V primary system power supplies a 1.5V regulator at U5 for the DDR3 memory at U6.

4.3 Vybrid Processor Core Power

The 1.1V and 1.2V power supplies needed by the Vybrid processor core are generated by regulators internal to the Vybrid processor from the main system 3.3V supply.

4.4 Backup Power (VBAT)

To backup the RTC on the module, a secondary voltage source VBAT, can be attached to the phyCORE-Vybrid at pin X1-C4. This voltage source supplies the backup voltage domain VBAT to the external RTC (U16) and to the VFx00 to supply its internal RTC and some critical registers when the primary system power, VDD_3V3, is removed.

The voltage range for VBAT for the VFx00 RTC is 3.0 - 3.6V. The range for the external RTC is 2.0V - 5.0V. Applications not requiring a backup mode should connect the VBAT pin to the primary system power supply, VDD_3V3.

5 External RTC

An external RTC at U16 has been provided in addition to the VFx00 on-chip RTC. This additional RTC provides a secondary time keeping source along with a secondary alarm mechanism to the processor via its interrupt signal.

The RTC is interfaced to the processor via the I2C2 port. The I^2C address of the device is binary 1101000x, where the 'x' bit is the read/write operation bit. The interrupt from the RTC routes to the phyCORE connector pin X1-A11, providing the Carrier Board the opportunity to use it for system wake circuitry or to connect it to a processor signal as an alarm interrupt.

The RTC is powered via the primary system 3.3V supply during normal operation and via the VBAT power input, if it is present, during power-off. See Chapter 4.4 for detailed information on providing backup power to the RTC via the VBAT power input.

6 System Configuration and Booting

Although most features of the VFx00 microcontroller are configured or programmed during software initialization, other features which impact program execution must be configured prior to initialization via pin termination.

The system start-up configuration includes:

- Clock configuration
- Boot device configuration

The processor boot mode is configured by latching the state of 24 boot mode configuration pins during a power-on reset event. The SOM includes a circuit which sets 23 of these.

CAUTION:

The Carrier Board must set the signal MCU_PTB2 low during reset. Please see the Vybrid Carrier Board design for a reference circuit.

The only default boot mode setting that should be changed by the user is the selection of the boot device. The boot device is selected with five of the Vybrid configuration signals, as shown in Table 6-1. The default configuration is to boot from UART or USB0.

The user can select an alternate boot device either by changing the resistor stuffing on the SOM for these signals, or by overriding these signals from the Carrier Board. Chapter 13.2.3 describes the switch on the Vybrid Carrier Board which can override the SOM default boot device configuration.

Boot Device	BOOTMOD1 / MCU_PTE0	BOOTMOD0/ MCU_PTE1	RCON7 / MCU_PTE16	RCON6 / MCU_PTE15	RCON5 / MCU_PTE12
SPI	1	0	0	0	0
SD-Card	1	0	1	1	0
NAND	1	0	0	0	1
UART / USB0	0	1	0	0	0
Fuses	0	0	Х	Х	Х

Table 6-1. Boot Device Selection

The internal ROM code is the first code executed during the initialization process of the VFx00 after poweron reset. The ROM code detects the selected boot device by examining the latched state of the boot mode configuration pins.

For peripheral boot devices, the ROM code polls the communication interface selected, initiates the download of the code into the internal RAM, and triggers its execution from there. Peripheral booting is normally not applicable only after a warm reset.

Like most pins on the processor, the boot mode configuration pins are multiplexed with other peripheral functions. After the reset cycle completes these pins may be used for other purposes. When using these pins for other purposes, make sure their secondary functions are tri-stated, or disabled during the reset cycle to avoid interfering with the latched boot mode.

7 System Memory

The phyCORE-Vybrid provides four types of on-board memory¹:

1.	DDR3 SDRAM:	128MB to 512MB
2.	NAND Flash:	256MB to 2GB
3.	SPI NOR Flash:	16 MB to 128MB
4.	I ² C-EEPROM:	4KB to 32KB

The following sections of this chapter detail each memory type used on the phyCORE-Vybrid SOM.

7.1 DDR3 SDRAM

The RAM memory of the phyCORE-Vybrid is comprised of one 16-bit wide DDR3 SDRAM chip at U6. The chip is connected to the dedicated DDR interface of the VFx00 processor.

Typically the DDR3 SDRAM initialization is performed by a boot loader or operating system following a power-on reset and must not be changed at a later point by any application code. When writing custom code independent of an operating system or boot loader, SDRAM must be initialized through the appropriate SDRAM configuration registers on the VFx00 controller. Refer to the VFx00 TRM about accessing and configuring these registers.

7.2 NAND Flash

The use of NAND flash as non-volatile memory on the phyCORE-Vybrid provides an easily reprogrammable means of code storage. The NAND Flash memory is connected to the VFx00 GPMC interface with a bus-width of 16-bits. The Flash device is programmable with 3.3V. No dedicated programming voltage is required.

As of the printing of this manual NAND Flash devices generally have a life expectancy of at least 100,000 erase/program cycles and a data retention rate of 10 years.

7.3 QSPI NOR Flash

The phyCORE-Vybrid can be populated with one or two QSPI NOR Flash memories as an ordering option. The flash devices connect to QSPI0_A port and QSPI0_B port.

QSPI Flash is substantially faster than traditional SPI flash devices due to four I/O pins for data transfers, as opposed to only one. In addition, QSPI is XIP compatible, allowing the processor to boot directly from it.

The use of QSPI NOR Flash is suitable for systems which require a small code footprint, or lack the software drivers required for bad block management in NAND Flash. It can also potentially reduce BOM costs and free up NAND signals for other devices/uses on the VFx00 Flexbus interface.

7.4 I²C EEPROM

The phyCORE-Vybrid can be populated with a non-volatile I²C EEPROM as an ordering option. This memory can be used to store configuration data or other general purpose data. This device is accessed through I²C port 2 on the VFx00.

Solder jumpers J1 and J2 are provided to set two of the lower address bits. Refer to Chapter 7.4.1 for details on using these jumpers to set the EEPROM's address.

^{1.} The maximum memory size listed is as of the printing of this manual. Please contact PHYTEC for more information about additional, or new module configurations available.

Write-protection to the device is accomplished via jumper J6. Refer to Chapter 7.4.2 for details on using the write-protect feature.

7.4.1 Setting the EEPROM Lower Address Bits

The four upper address bits of the I²C EEPROM's 7-bit address are fixed at '1010.' Lower address bit A0 is wired to GND. The phyCORE-Vybrid SOM allows the user to configure the lower address bits A1 and A2 with jumpers J1 and J2 respectively.

Table 7-1 below shows the resulting seven bit I²C device address for the four possible jumper configurations.

U9 I ² C Device Address	J1	J2
1010 000x	2 + 3	2 + 3
1010 010x	1 + 2	2 + 3
1010 100x	2 + 3	1 + 2
1010 110x	1 + 2	1 + 2

Table 7-1. U6 EEPROM I²C Address via J1 and J2

7.4.2 EEPROM Write Protection Control (J6)

Jumper J6 controls write access to the EEPROM (U9) device. Closing this jumper allows write access to the device, while removing this jumper will cause the EEPROM to enter write-protect mode, thereby disabling write access to the device.

The following configurations are possible:

Table 7-2. EEPROM Write-Protection States Via J6

EEPROM Write Protection State	J6
Write access allowed	closed
Write-protected	open

7.5 Memory Model

There is no special address decoding device on the phyCORE-Vybrid, which means that the memory model is given according to the memory mapping of the Vybrid processor. Please refer to the VFx00 TRM for the memory map.

8 Serial Interfaces

The phyCORE-Vybrid provides on-board transceivers for three different serial interfaces:

- 1. One RS-232 transceiver supporting two RX/TX channels
- 2. Two 10/100 Ethernet PHYs
- 3. Two CAN transceivers

The following sections of this chapter detail each of these serial interfaces and any applicable configuration jumpers.

8.1 SCI / RS-232

The phyCORE-Vybrid provides an on-board RS-232 transceiver at U15. This device provides RS-232 voltage level translation for either the SCI1 interface data signals with its RTS/CTS hardware flow control signals, or for both of the SCI1 and SCI2 interface data signals. These SCI and RS-232 signals are available at the phyCORE connector. Their locations are shown in Table 8-1.

Pin #	Signal	Туре	SL	Description
3A	MCU_PTB4	IO	VDD_3V3	SCI1 Tx
4A	MCU_PTB5	IO	VDD_3V3	SCI1 Rx
5A	MCU_PTB6	IO	VDD_3V3	SCI1 RTS or SCI2 Tx
6A	MCU_PTB7	IO	VDD_3V3	SCI1 CTS or SCI2 Rx
8C	SCI1_TX_RS232	IO	VDD_3V3	SCI1 Tx at RS232 voltage
10C	SCI2_TX_RS232	IO	VDD_3V3	SCI1 RTS or SCI2 Tx at RS232 voltage
9C	SCI1_RX_RS232	IO	VDD_3V3	SCI1 Rx at RS232 voltage
11C	SCI2_RX_RS232	IO	VDD_3V3	SCI1 CTS or SCI2 Rx at RS232 voltage

Table 8-1. SCI RS-232 Signal Locations

8.2 Ethernet

The phyCORE-Vybrid comes populated with two Micrel Ethernet PHYs at U2 and U3 supporting 10/100 Mbps Ethernet connectivity. These PHYs connect over RMII to the Dual Ethernet MAC integrated in the VFx00.

The Ethernet PHYs support the HP Auto-MDIX function, eliminating the need for consideration of a direct connect LAN cable or a cross-over patch cable. The PHYs detects the TX and RX pins of the connected device and automatically configures its own TX and RX pins accordingly.

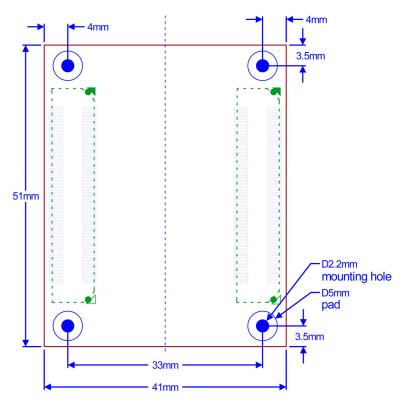
Interfacing the Ethernet ports involves adding RJ45 connectors and appropriate magnetic devices in your design. Please consult the phyCORE-Vybrid Carrier Board schematics as a reference.

If the Ethernet ports will not be used, the transceivers on the SOM can be disabled, allowing these signals to be designated for other uses.

8.3 FlexCAN

The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed real time control with a high level of security.

The VFx00 includes two CAN interfaces. These support bitrates up to 1 MBit/s and are compliant to the FlexCAN3 protocol specification.


The phyCORE-Vybrid provides two CAN transceivers at U13 and U14. These transceivers can be used to translate the signal voltages out of the VFx00 to CAN levels and ISO 11898 requirements.

For configurations which do not require CAN level translation, or which require full DC-DC isolation on the CAN interfaces, the CAN transceivers can be removed and 0 Ohm resistors can be installed to bypass them. In this configuration there is a direct connection between the TTL level signals and the CAN level signals, leaving the CAN level signals operating at TTL levels.

If full DC isolation is required, isolating transceivers can be designed into a Carrier Board. Please see the phyCORE-Vybrid Carrier Board schematic for a reference implementation.

9 Technical Specifications

The physical dimensions of the phyCORE-Vybrid are presented in Figure 9-1. The module's profile is max. 5.5 mm thick, with a maximum component height of 2.0 mm on the bottom (connector) side of the PCB and approximately 2.5 mm on the top (microcontroller) side. The board itself is approximately 1.0 mm thick.

dimensions referenced to the outside edges have a tolerance of +/- 0.2 mm; all other dimensions have a tolerance of +/- 0.1 mm (unless otherwise noted)

Fig. 9-1. phyCORE-Vybrid Physical Dimensions

Table 9-1.	Technical Specifications ^a	
------------	---------------------------------------	--

Dimensions	41 mm x 51 mm
Weight	Approximately 10 g with all optional components mounted on the circuit board
Storage Temperature	-40 °C to +125 °C
Operating Temperature	0 °C to +70 °C (commercial)
	-40°C to +85°C (industrial) ^b
Humidity	95% r.F. not condensed
Operating Voltage	VCC 3.3V +/- 5%
	VBAT 3.0 - 3.6V
Power Consumption	Typical: VCC 3.3V / 0.6A / 1.98 Watts
	Maximum: VCC 3.3V / 1.0A / 3.3 Watts
	Operating Conditions:
	VF600, 256 MB DDR3-SDRAM, 512 MB NAND Flash,
	Flash, Ethernet, 450 MHz CPU frequency, 20 °C

a. These specifications describe the standard configuration of the phyCORE-Vybrid as of the printing of this manual.

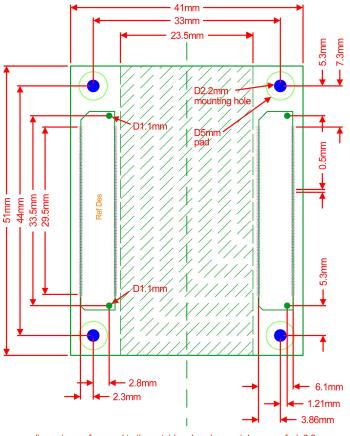
b. In order to guarantee reliable functioning of the SOM up to the maximum temperature appropriate cooling measures

must be provided. Use of the SOM at high temperature impacts the SOM's life span.

Table 9-2. Part information for phyCORE Connectors (X1)

Manufacturer	Samtec
Part Number (lead free)	BSH-060-01-L-D-A (receptacle)
Mating Connector	BTH-060-01-L-D-A (header)
Mated Height	5 mm
Number of Pins Per Contact Rows	120 (2 Rows of 60 pins each)

Different heights are offered for the receptacle sockets that correspond to the connectors populating the underside of the phyCORE-Vybrid. The given connector height indicates the distance between the two connected PCBs when the module is mounted on the corresponding Carrier Board. In order to get the exact spacing, the maximum component height (2.0 mm) on the bottom side of the phyCORE must be subtracted.


Please refer to the corresponding datasheets and mechanical specifications provided by Samtec www.samtec.com.

10 Integrating and Handling the phyCORE-Vybrid

10.1 Integrating the phyCORE-Vybrid

Successful integration of the phyCORE-Vybrid into a custom carrier board requires adherence to the layout design rules for the GND connections of the phyCORE module. As a general design rule we recommend connecting all GND pins neighboring signals which are being used in the application circuitry. At minimum four GND pins should be connected in addition to the four VDD pins used for SOM power (see Chapter 1.2 for details). For maximum EMI performance all GND pins should be connected to a solid ground plane.

To facilitate the integration of the phyCORE-Vybrid into your design, the footprint of the phyCORE-Vybrid is shown in Figure 10-1.

dimensions referenced to the outside edges have a tolerance of +/- 0.2 mm; all other dimensions have a tolerance of +/- 0.1 mm (unless otherwise noted)

shaded area represents space to place noncritical components (no RF emission, no thermal radiation, etc.) underneath the module

please bear in mind the maximum height of the components given by the height of the connectors and the components on the bottom side of the SOM

Fig. 10-1. phyCORE-Vybrid Footprint

Besides this hardware manual, other information is available to facilitate the integration of the phyCORE-Vybrid into customer applications:

- The design of the phyCORE-Vybrid Carrier Board can be used as a reference for any customer application. Reference schematics are available upon request.
- Answers to many common questions can be found at www.phytec.de/de/support/faq/faq-phycore-Vybrid.html, or www.phytec.eu/europe/support/faq/faq-phycore-Vybrid.html.
- Different support packages are available to support you in all stages of your embedded development. For North America please visit http://www.phytec.com/support/contract.html. For Europe and Asia please visit www.phytec.de/de/support/support-pakete.html, www.phytec.eu/ europe/support/supportpackages.html, or contact our sales team for more details.

10.2 Handling the phyCORE-Vybrid

Removal of various components, such as the microcontroller and the standard quartz, is not advisable given the compact nature of the module. Should this nonetheless be necessary, please ensure that the board as well as surrounding components and sockets remain undamaged while de-soldering. Overheating the board can cause the solder pads to loosen, rendering the module inoperable. Carefully heat neighboring connections in pairs. After a few alternations, components can be removed with the solder-iron tip. Alternatively, a hot air gun can be used to heat and loosen the bonds.

CAUTION:

If any modifications to the module are performed, regardless of their nature, the manufacturer warranty is voided.

11 Component Placement

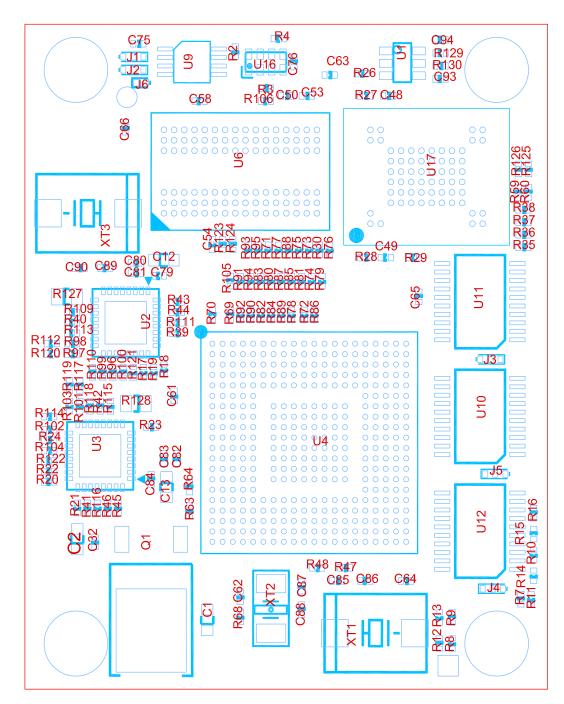


Fig. 11-1. phyCORE-Vybrid Component Placement: Top

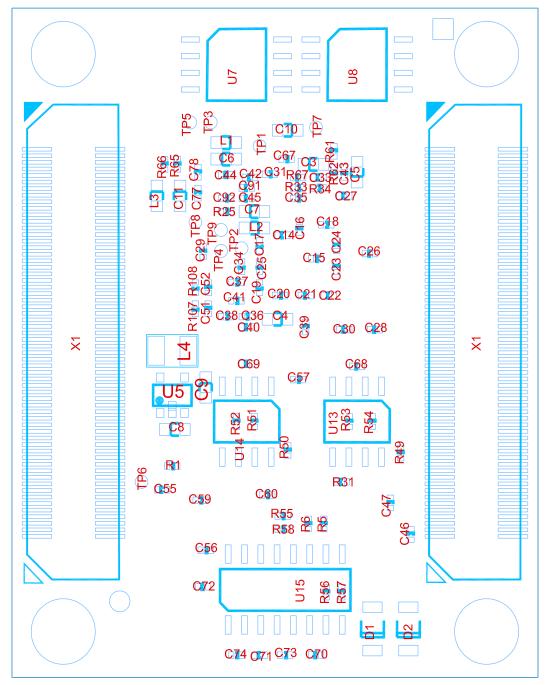


Fig. 11-2. phyCORE-Vybrid Component Placement: Bottom

Part II: PCM-952/phyCORE-Vybrid Carrier Board

Part 2 of this three part manual provides detailed information on the phyCORE-Vybrid Carrier Board and its usage with the phyCORE-Vybrid SOM. The information and all board images in the following chapters are applicable to the 1375.2 PCB revision of the phyCORE-Vybrid Carrier Board.

The Carrier Board can also serve as a reference design for development of custom target hardware in which the phyCORE SOM is deployed. Carrier Board schematics with BoM are available under a Non Disclosure Agreement (NDA). Re-use of Carrier Board circuitry likewise enables users of PHYTEC SOMs to shorten time-to-market, reduce development costs, and avoid substantial design issues and risks.

12 Introduction

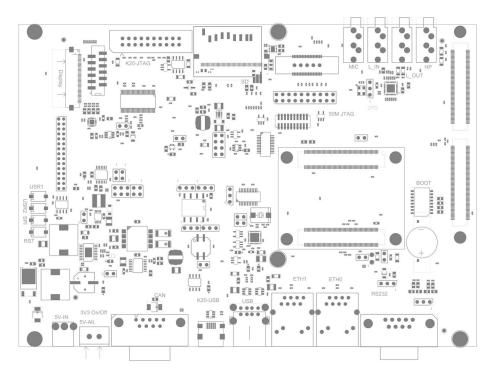


Fig. 12-1. phyCORE-Vybrid Carrier Board

The phyCORE-Vybrid Carrier Board provides a flexible development platform enabling quick and easy start-up and subsequent programming of the phyCORE-Vybrid System on Module. The Carrier Board design allows easy connection of additional expansion boards featuring various functions that support fast and convenient prototyping and software evaluation.

The phyCORE-Vybrid Carrier Board is designed for evaluation, testing, and prototyping of PHYTEC SOMs in laboratory environments prior to their use in customer designed applications.

This modular development platform concept includes the following components:

- The phyCORE-Vybrid System on Module populated with the VFx00 processor and all applicable SOM circuitry such as DDR3 SDRAM, Flash, and Ethernet transceivers, to name a few.
- The phyCORE-Vybrid Carrier Board offers all essential components and connectors for start-up, including a power socket enabling connection to an external power adapter and interface connectors such as RS-232, USB, CAN, Ethernet, allowing for use of the SOM's interfaces with standard cables.

The phyCORE-Vybrid Carrier Board has the following features for supporting the phyCORE-Vybrid SOM:

- Power supply circuits to supply the phyCORE-Vybrid and the peripheral devices of the Carrier Board
- Two RS-232 interfaces brought out to a RS-232 connector and to a pin-header
- Two USB interfaces brought out to a dual USB Standard-A connector
- Two 10/100 Mbps Ethernet interfaces with RJ45 jacks
- Two CAN interfaces: one available at a male DB9 connector with optional optical isolation, and another available at the GPIO Expansion Connector
- Audio codec and connectors supporting MIC in, stereo headphone out, stereo line out, and stereo line in

- PHYTEC Display Interface connector with touch screen and light sensor support
- TTL display connector supporting a low cost display panel made by HTDisplay Electronics Co. Ltd.
- Display pin header enabling connection of custom display interfaces and easy access to display signals
- Secure Digital Memory Card / MultiMedia Card Interface (SD / MMC)
- K20 processor supporting openSDA protocol and CMSIS-DAP for multicore debugging with the ARM Development Studio 5 tool suite
- JTAG connector for the VFx00 processor on the SOM
- Access to phyCORE-Vybrid's TAMPER security signals
- Expansion board connectors for easy access to most processor signals
- Dip switch to configure processor boot source
- Backup battery to power the Real-Time Clock
- Reset, power, and user buttons and LEDs

The following sections contain information specific to the operation of the phyCORE-Vybrid SOM mounted on the phyCORE-Vybrid Carrier Board.

13 Overview of Peripherals

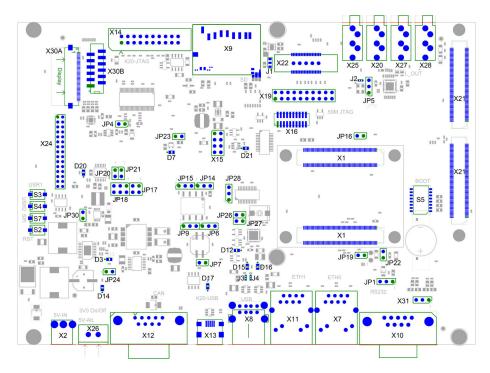


Fig. 13-1. Overview of Peripherals

The phyCORE-Vybrid Carrier Board is depicted in Figure 12-1. It is equipped with the components and peripherals listed in the tables below. For a more detailed description of each peripheral, refer to the appropriate chapter listed in the applicable table. Figure 13-1 highlights the location of each peripheral for easy identification.

13.1 Connectors and Pin Headers

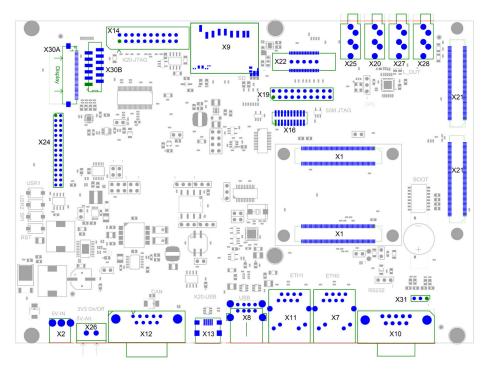


Fig. 13-2. phyCORE-Vybrid Connectors (Top)

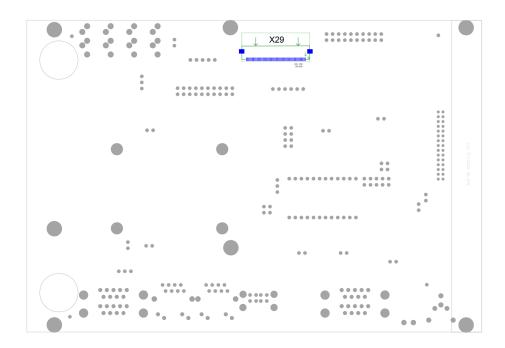


Fig. 13-3. phyCORE-Vybrid Connectors (Bottom)

The table below lists the connectors on the phyCORE-Vybrid Carrier Board.

Reference Designator	Description	Chapter
X1	phyCORE-Connectors for SOM connectivity	2
X2	+5 V power input (primary power input, 3 A capacity)	16
Х7	Ethernet0 RJ45 connector	17
X8	USB 2.0 Dual Standard-A	20
X9	Secure Digital Memory / MultiMedia Card slot	22
X10	RS-232 Dual DB9-Female	18
X11	Ethernet1	17
	RJ45	
X12	CAN Dual DB9-Male	19
X13	USB Mini-AB for K20 Debug Circuit	25
X16	VFx00 1.27mm JTAG + Reduced Trace pin header	25
X19	VFx00 2.54mm JTAG pin header	25
X20	Line-in 3.5 mm audio jack	23
X21	Expansion connectors	28
X22	VFx00 JTAG + Full Trace Mictor connector	25
X24	Display (pin header)	21
X25	Microphone 3.5 mm audio jack	23
X26	+5 V power input (alternate connector, 16 A capacity)	16
X27	Line-out 3.5 mm audio jack	23
X28	Headphone 3.5 mm audio jack	23
X29	Display (connector for the TTL display)	21
X30A & X30B	Display (PHYTEC Display Interface data and power connectors)	21
X31	RS-232 pin header	18

Table 13-1	. phyCORE-Vybr	id Connectors
------------	----------------	---------------

CAUTION:

Ensure that all module connections are not to exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller User's Manual/Data Sheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading through connected peripherals.

13.2 Buttons and Switches

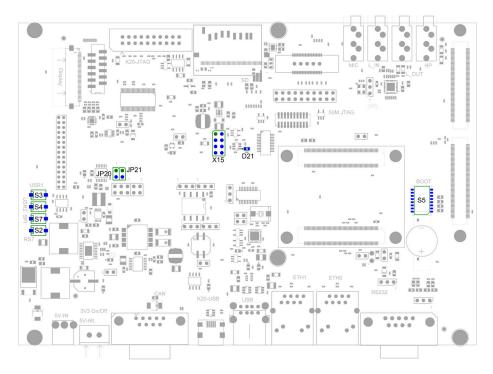


Fig. 13-4. Buttons and Switches

The phyCORE-Vybrid Carrier Board is populated with four push-button switches and an 8-position DIPswitch. These are essential for the operation of the phyCORE-Vybrid module on the Carrier Board. Figure 13-4 shows their locations, while their functions are described in the tables below.

Button	Description	Chapter
S2 (Reset)	System Reset Button – issues a system warm reset	6
S3 (User button 1)	User button BTN1 - Toggles the MCU_PTB8 signal if jumper JP20 is installed on the Carrier Board.	13.2.2
S4 (User button 2)	User button BTN2 - Toggles the MCU_PTB9 signal if jumper JP21 is installed on the Carrier Board.	13.2.2
S7 (SPI Flash)	System reset if jumper X15=1+2. This is for programming the SPI Flash devices on the SOM through the K20 processor.	26

Table 13-2. Button Descriptions

13.2.1 System Reset Button

The phyCORE Carrier Board is equipped with a system reset button at S2. Pressing the button will not only reset the phyCORE mounted on the phyCORE-Vybrid Carrier Board, but also the peripheral devices, such as the display. The red LED at D21 will light while system reset is asserted.

13.2.2 User Programmable Push Buttons

Two user programmable push buttons are located at S3 and S4. Each of these can connect through a jumper to a Vybrid GPIO signal to facilitate software development. The jumpers can be removed to make the Vybrid GPIO signals available for other uses.

- JP20 Connects S3 to Vybrid signal MCU_PTB8
- JP21 Connects S4 to Vybrid signal MCU_PTB9

13.2.3 Boot Configuration Switch

The 8-position DIP switch at S5 provides a way to override the default boot option of the VFx00, which is defined by resistors on the phyCORE-Vybrid SOM. (please refer to Chapter 6 for more information).

Table 13-3 below shows the state of each boot mode signal when the corresponding switch position is turned ON. Table 13-4 shows the required switch positions to configure the desired boot device.

S 5	Setting Description
1	ON to pull BOOTMOD0 low
2	ON to pull BOOTMOD1 high
3	ON to pull RCON5 high
4	ON to pull RCON6 high
5	ON to pull RCON7 high
6-8	Not used

Table 13-3. Switch Settings (S5)

Table 13-4. Boot Configuration Settings

S5 [15]	Boot Device
on, on, on, off	SD Card
on, on, off, off, on	NAND
on, on, off, off, off	QSPI
off, off, off, off	UART/USB0

13.2.4 SPI Flash Button

Button S7 is part of the K20 debug circuit. It is for programming the SPI Flash devices on the SOM through the K20 processor. It can be used as a system reset if jumper X15=1+2.

For a detailed description of this button and associated uses, please see Chapter 26

13.3 LEDs

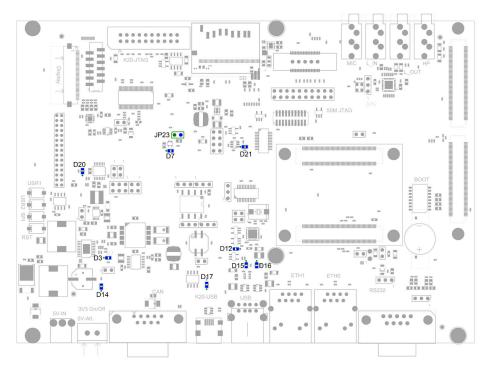


Fig. 13-5. LEDs

The phyCORE-Vybrid Carrier Board is populated with numerous LEDs to indicate the status of various interfaces as well as the input power supply. Figure 13-5 shows the location of the LEDs. Their functions are listed in the table below.

LED	Label	Color	Description	Chapter
D3	5 V	red	5 V input power	16
D7	LED3	green	User LED 3, Vybrid analog control	13.3
D12	K20	green	K20 Debug	13.3
D14	3V3	green	3.3 V power	16
D15	VBUS1	red	USB1 VBUS	20
D16	VBUS0	red	USB0 VBUS	20
D17	CAN	green	5 V power to the CAN connector	19
D20	LED1	green	User LED 1, Vybrid on/off control	13.3.1
D21	RESET	red	System reset	13.2.1

Table 13-5. LED Descriptions

13.3.1 User Programmable LEDs

The phyCORE Carrier Board is equipped with two user programmable LEDs (D7, D20) to facilitate software development. Each LED can be disconnected from its processor signal to make the signal available for other uses.

- **D7** Is controlled by the Vybrid processor on the SOM. The brightness can be set in 4096 steps from off to fully bright with the analog Vybrid DAC1 signal when jumper JP23 is installed.
- **D20** Is controlled by the Vybrid processor on the SOM and can be turned on and off by the Vybrid GPIO signal MCU_PTB10 when resistor R138 is installed.

14 Jumpers

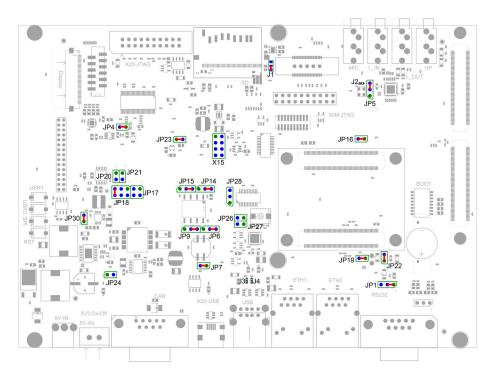


Fig. 14-1. Jumper Locations and Default Settings

The phyCORE Carrier Board comes pre-configured with 22 removable jumpers and 4 solder jumpers. Figure 14-1 provides a detailed view of the phyCORE-Vybrid Carrier Board jumpers and their default settings.

The jumpers allow the user flexibility of configuring a limited number of features for development purposes.

Figure 14-2 depicts the jumper pad numbering scheme for reference when altering jumper settings on the development board; a beveled edge indicates the location of pin 1.

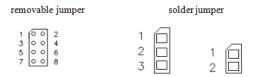


Fig. 14-2. Jumper Numbering Scheme

Before making connections to peripheral connectors, consult the applicable sections in this manual for setting the associated jumpers.

Table 14-1 is a list of all Carrier Board jumpers, their default positions, and their functions in each position. The table only provides a concise summary of jumper descriptions. For a detailed descriptions see the applicable chapter listing in the right hand column of the table.

The following conventions were used in naming jumpers on the Carrier Board:

- J = solder jumper
- JP = removable jumper

Table 14-1. Jumper Settings and Descriptions	Table 14-1.	Jumper Settings	and Descriptions
--	-------------	-----------------	------------------

Jumper	Setting	Description	Chapter
JP1	CLOSED	The SOM's VBAT supply connects to the battery	16.2
	OPEN	The SOM's VBAT supply is disconnected	-
JP4	CLOSED	The LVDS transmitter is disabled	21
	OPEN	The LVDS transmitter is enabled	-
JP5	1+2	The external crystal oscillator provides the audio codec master clock. J2 must be installed at 1+2 to enable the oscillator.	23
	2+3	The Vybrid MCU_PTB11 signal provides the audio codec master clock.	-
JP7	CLOSED	The CAN0 termination is connected	19
	OPEN	The CAN0 termination is not connected	-
JP6 JP9	1+2	The CAN signals route through the transceivers on the Carrier Board	19
JP14 JP15	2+3	The CAN signals bypass the transceivers on the Carrier Board	-
JP16	CLOSED	RTC_INTn connects to the Vybrid signal MCU_PTB23	5
	OPEN	RTC_INTn does not connect to any Vybrid signals. MCU_PTB23 is available on the Expansion Connector.	-
JP17	1+2	Connects isolated 5 V power to the CAN connectors.	19
	3+4	Connects isolated 5 V power to the CAN transceivers.	-
	OPEN	The CAN circuits are not connected to isolated 5 V power	-
JP18	1+2	Connects system 5 V power to the CAN connectors. (5+6) must also be installed.	19
	3+4	Connects system 5 V power to the CAN trance i vers. (5+6) must also be installed.	-
	5+6	Connects system GND to CAN_GND.	-
	OPEN	The CAN circuits are not connected to system 5 V power or GND	-
JP19	CLOSED	Tamper2 and Tamper3 signals are connected. This allows testing of normal physical security operating condition.	27
	OPEN	Tamper2 and Tamper3 signals are disconnected. This allow test- ing of a physical security fault condition, such as of a panel being opened.	-
JP20	CLOSED	User Button 1 is connected to the signal MCU_PTB8	13.2
	OPEN	User Button 1 is not connected to the signal MCU_PTB8	-
JP21	CLOSED	User Button 2 is connected to the signal MCU_PTB9	13.2
	OPEN	User Button 2 is not connected to the signal MCU_PTB9	-

Table 14-1.	Jumper Settings and Descriptio	ns (Continued)

Jumper	Setting	Description	Chapter				
JP22	CLOSED	Normal system use	16				
	OPEN	Calculate the current to the SOM by measuring the voltage across the JP22 pins. The resistance across this path is set by resistor R153, default value 0.070 Ohms +/- 1%. Current = voltage / resistance.	_				
JP23	CLOSED	The DACO1 signals can control User LED 3	13.3 & 11				
	OPEN	The DACO1 signal does not connect to User LED 3. DACO1 is available at the Expansion Connector X21 for custom uses.	_				
JP24	CLOSED	The CAN isolated power converter is enabled	19				
	OPEN	The CAN isolated power converter is dis abed					
JP26	CLOSED	The K20's UART is connected to the Vybrid's UART1	25				
JP27	OPEN	The K20's UART is not connected to the Vybrid	_				
JP28	1+2	The K20 SPI interface connects to the SOM's SPI_A Flash U7	25				
	2+3	The K20 SPI interface connects to the SOM's SPI_B Flash U8					
	OPEN	The K20 SPI interface does not connect to the SOM's SPI Flash devices	_				
JP30	CLOSED	U28 is disabled; the TTL display connector does not have power.	21				
	OPEN	U28 supplies power for the TTL display connector.	_				
X15	1+2	Reset the Vybrid with the SPI Flash Button	25				
	3+4	Reset the Vybrid with the K20_SPI0_CS signal	-				
	5+6	Reset the Vybrid with the K20_GPIO_PTD6 signal	-				
	7+8	Reset the Vybrid while this jumper is installed	_				
	OPEN	Normal system use	-				
J1	1+2	VCC_10V4 is supplied by U6	21.2				
	2+3	VCC_10V4 is supplied by Q1	_				
J2	CLOSED	The audio codec external oscillator OZ1 is enabled	23				
	2+3	The audio codec external oscillator OZ1 is disabled	_				
J3, J4	1+2	USB1 routes to the PHYTEC Display Connector X30	20				
	2+3	USB1 routes to the USB1 connector X8	_				

15 phyCORE-Vybrid SOM Connectivity

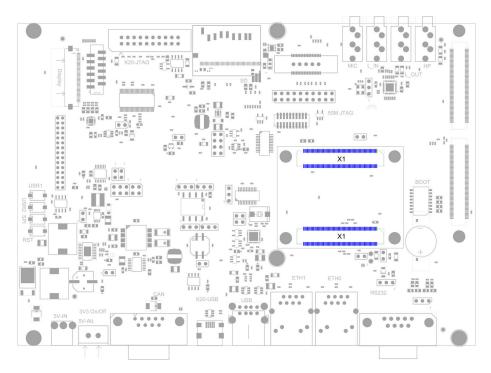


Fig. 15-1. phyCORE-Vybrid SOM Connectivity to the Carrier Board

Connectors X1 on the Carrier Board provide connectivity to the phyCORE SOM and are keyed for proper insertion. Figure 15-1 shows the location of these connectors. Pin numbering scheme is shown in Figure 2-1 Please refer to Chapter 9, Table 9-2 for more information about the phyCORE connectors including manufacturer, part number, and ordering.

16 Power

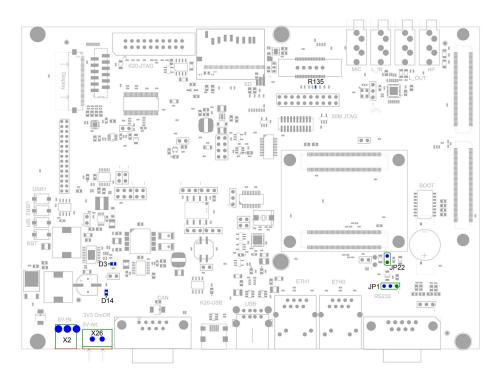


Fig. 16-1. Powering Scheme

The primary input power of the phyCORE-Vybrid Carrier Board is supplied from the wall adapter jack at X2 (5V with 3A capacity). An alternate 5V input connector at X26 is an optional feature with a 16A capacity. This option is provided for using high powered PHYTEC Displays that exceed the 5V/3A provided by X2. The input connector at X26 does not come standard on the phyCORE-Vybrid Carrier Board; it must be special ordered. Use only one of these two connectors.

A switching regulator generates 3.3V to supply the SOM and components on the Carrier Board. The following table lists the voltage domains and their uses.

Voltage Domain	Description
VCC_5V0	Main supply voltage from wall adapter input at X2 or X26. VCC_5V0 powers the other supplies on the Carrier Board.
VCC_3V3	VCC_3V3 powers the SOM and various components on the Carrier Board.
VBAT	The VBAT 3 V backup battery powers the RTC on the SOM if jumper JP1 is installed.

Table 16-1. Voltage Domains

Power LEDs on the phyCORE-Vybrid Carrier Board are shown in the following table.

LED	Color	Description
D3	red	VCC_5V0 supply voltage
D14	green	VCC_3V3 supply voltage

16.1 Wall Adapter Input

Permissible input voltage at X2 or X26: +5 V DC +/- 10%.

CAUTION:

Do not use a laboratory adapter to supply power to the Carrier Board! Power spikes during power-on could destroy the phyCORE module mounted on the Carrier Board. Do not change modules or jumper settings while the Carrier Board is supplied with power.

The required current load capacity of the power supply depends on the specific configuration of the phyCORE mounted on the Carrier Board, the particular interfaces enabled while executing software, and any optional expansion board connected to the Carrier Board. An adapter with a minimum supply of 1.5A is recommended.

To power up the phyCORE, plug in the power supply connector; the red 5V LED and the green 3.3V LED should light up.

16.2 VBAT

To backup the RTC on the SOM, a secondary voltage source of 3V can be attached to the phyCORE-Vybrid at pin X1-C4. This voltage source supplies the backup voltage domain VBAT of the VFx00 which supplies the RTC and some critical registers when the primary system power, VCC_3V3, is removed.

Install jumper JP1=1+2 to connect the VBAT supply to the phyCORE-Vybrid.

16.3 Current Measurement

To facilitate current measurement, jumper JP22 is provided as a current measurement access point. When JP22 is removed, the voltage across its pins reflects the current supplied to the SOM through resistor R153. By default, the value of R153 is 0.07 Ohm +/- 1%.

17 Ethernet

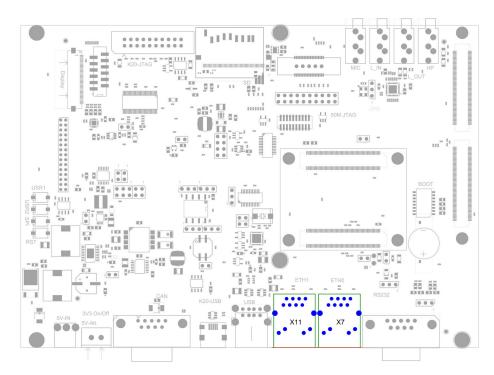


Fig. 17-1. Ethernet Interface Connectors

The 10/100 Ethernet interfaces on the SOM are accessible at RJ-45 connectors X7 and X11. Ethernet0 routes to connector X7 and Ethernet1 routes to X11. The LEDs for LINK (green) and SPEED (yellow) indication are integrated in the connectors.

This Ethernet PHYs on the SOM support the HP Auto-MDIX function, eliminating the need for considerations of a direct connect LAN cable or a cross-over patch cable. The transceivers detect the TX and RX signals of the connected devices and automatically configure their TX and RX pins accordingly.

18 RS-232

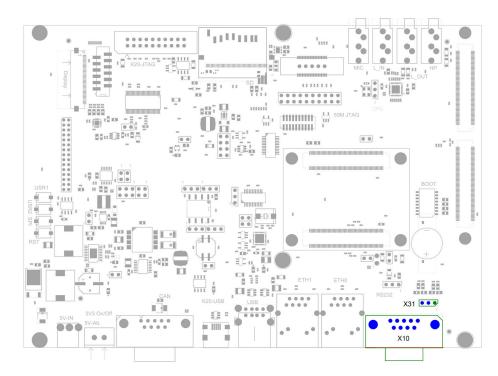


Fig. 18-1. RS-232 Interface Connectors

The DB-9 connector X10 provides the SCI1 signals of the VFx00 at RS-232 level; it is the default communication port. The X31 pin header provides the SCI2 signals at RS-232 level. Table 18-2 and Table 18-1 show the signal locations and descriptions for these connectors.

Fig. 18-2. DB-9 RS-232 Connectors P1A and P1B Pin Numbering

Pin	Signal	Туре	SL	Description
1	N/C	-		Not connected
2	SCI1_TX_RS232	OUT	RS-232	UART1 transmit signal at RS232 level
3	SCI1_RX_RS232	IN	RS-232	UART1 receive signal at RS232 level
4	N/C	-		Not connected
5	GND	-		Ground
6	N/C	-		Not connected
7	N/C	-		Not connected
8	N/C	-		Not connected
9	N/C	-		Not connected

Table 18-1. X10 Pin Descriptions

Table 18-2. X31 Pin Descriptions

Pin	Signal	Туре	SL	Description
1	MCU_PTB6	OUT	RS-232	SCI2_TX at RS-232 level
2	GND	-	-	Ground 0 V
3	MCU_PTB7	IN	RS-232	SCI2_RX at RS-232 level

19 CAN (Controller Area Network)

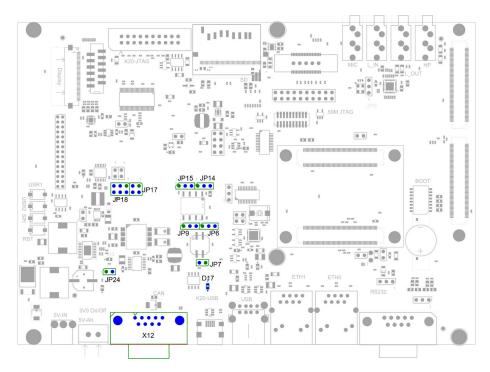


Fig. 19-1. CAN Interface Connectors and Jumpers

The CAN interfaces are configurable on both the SOM and the Carrier Board.

On the SOM:

- 1. Default: the signals route through CAN transceivers. The CAN transceivers on the SOM are compatible with ISO 11898. They do not support full DC-isolation.
- 2. Alternate configuration: the signals route directly from the Vybrid processor to their phyCORE connector pins. To use this configuration, the transceivers must be physically removed from the SOM. Please contact PHYTEC for more information about this configuration option.

On the Carrier Board:

- 1. Default: CAN0 signals route directly to DB9 connector X12.
- Alternate configuration: CAN0 signals from the SOM route through a CAN transceiver before routing to X12. The transceiver on the Carrier Board meets or exceeds ISO 11898 specifications and it supports full DC-isolation. To use the transceiver on the Carrier Board, the SOM must be configured to route the CAN0 signals directly to the phyCORE, with the CAN0 transceiver physically removed from the SOM.

Although many configurations are possible, generally the CAN0 interface will be run in one of three configurations:

- 1. **SOM Mode**: non-isolated mode using the CAN0 transceiver on the SOM. This is the default configuration.
- 2. **CB Isolated Mode**: Isolated mode using the CAN0 transceiver on the Carrier Board. Both data and power are isolated.
- 3. **CB Non-Isolated Mode**: non-isolated mode using the CAN0 transceiver on the Carrier Board.

Note that for both CB operating modes the CAN0 transceiver must be removed from the SOM. Please contact PHYTEC for assistance in removing CAN transceivers on the SOM.

A summary of the jumper settings for each operating mode is presented in Table 19-1.

Jumper	SOM Mode	CB Non-Isolated Mode	CB Isolated Mode
JP6	2+3	1+2	1+2
JP9	2+3	1+2	1+2
JP14	2+3	1+2	1+2
JP15	2+3	1+2	1+2
JP17	OPEN	OPEN	3+4
JP18	5+6	3+4, 5+6	OPEN
JP24	OPEN	OPEN	CLOSED

Table 19-1. CAN0 Jumper Settings

On the Carrier Board, the CAN1 signals from the phyCORE route directly to the Expansion Connector X21. See Table 31-1 (Processor Signal Map) in Chapter 31 for the CAN1 signal locations.

JP7 When closed, connects a 120 Ohm termination across the CAN0_H/L signal pair. This termination should be connected when the CAN0 signals connect at the physical end of a line with a cable that does not provide integrated termination.

19.1 VCC_CAN

In general, the configuration of VCC_CAN jumpers should be adjusted according to the operating modes listed in Table 19-1. However, a more detailed description of the VCC_CAN configuration is also presented here for reference.

In the default configuration, the CAN signals route through a transceiver on the SOM. Alternately, these signals route instead through a transceiver on the Carrier Board.

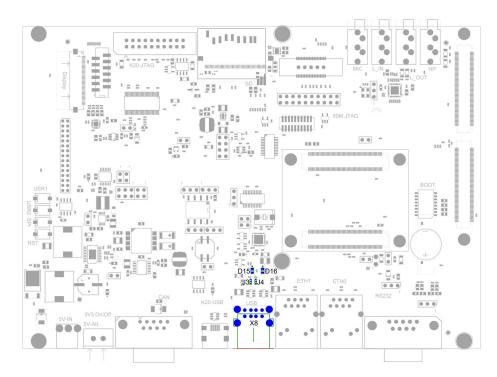
The Carrier Board transceiver can operate on either system power or DC-isolated power. The jumper settings for each of these configurations are shown in the table below.

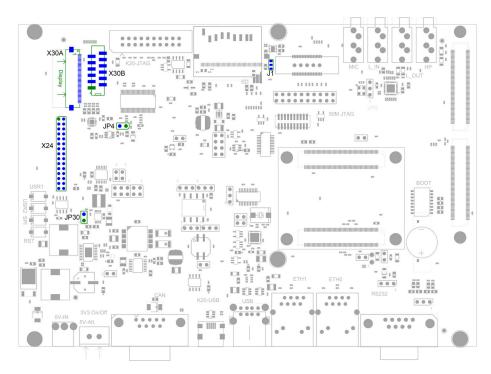
D17 indicates if 5V system power is provided to the CAN connector, which can be connected with JP18=1+2.

Table 19-2. VCC_CAN Supply Configuration	Table	19-2.	VCC_	CAN Sup	ply Conf	iguration
--	-------	-------	------	---------	----------	-----------

Configuration	JP17	JP18	JP24
CAN transceiver on SOM	OPEN	5+6	OPEN
CAN transceiver on CB, use system power	OPEN	3+4, 5+6	OPEN
CAN transceiver on CB, use DC-isolated power	3+4	OPEN	CLOSED

20 USB




Fig. 20-1. USB Interface

The USB0 and USB1 interfaces route to connector X8 (USB Dual Standard-A). Although both of these interfaces are USB OTG ports, they are limited to host operation due to the USB-A style connectors. USB0 is accessible at the bottom connector while USB1 is at the top connector.

20.1 VCC_USB

Each of the USB interfaces has its own voltage supply. LED D16 indicates when VCC_USB0 is powered, and LED D15 indicates when VCC_USB1 is powered. If either of these supplies goes into an over-current condition, the Vybrid will disable both.

21 Display

Fig. 21-1. Display

Three separate display interface connections are provided on the Carrier Board. Only one may be used at any given time. All three connection interfaces are sourced from the same display interface on the Vybrid processor.

Locations for X24 and X30 are found in Figure 21-1; the location of X29 is found in Figure 13-3 (the only connector on the underside of the board). Descriptions for the three connection interfaces are:

- **X24** This connector provides the 3.3V TTL level display signals, power (3.3V), and GND on a 2.54mm pin header for easy access.
- **X29** This connector connects to a low cost display provided by PHYTEC. The display is a 7" TFT panel with a resolution of 800x480 @ 24bpp manufactured by the HTDISPLAY ELECTRON-ICS CO., LTD. This display has no touch interface.
- X30A, These connectors comply with the PHYTEC Display Interface (PDI) for connection to a range of LCD display boards provided by PHYTEC. X30A provides data and control signals, while X30B provides power and auxiliary control.

21.1 Display Signals

Connector X24 has been provided to give easy access to the Vybrid processor's display interface. When using the following signals for display, signal type will change to OUT.

The pin-out for connector X24 is provided below.

Pin #	Signal	Туре	SL	Description
1	MCU_PTE7	I/O	VCC_3V3	Display red 2
2	MCU_PTE25	I/O	VCC_3V3	Display blue 4
3	MCU_PTE8	I/O	VCC_3V3	Display red 3
4	MCU_PTE26	I/O	VCC_3V3	Display blue 5
5	MCU_PTE9	I/O	VCC_3V3	Display red 4
6	MCU_PTE27	I/O	VCC_3V3	Display blue 6
7	MCU_PTE10	I/O	VCC_3V3	Display red 5
8	MCU_PTE28	I/O	VCC_3V3	Display blue 7
9	MCU_PTE11	I/O	VCC_3V3	Display red 6
10	MCU_PTE5	I/O	VCC_3V3	Display red 0
11	MCU_PTE12	I/O	VCC_3V3	Display red 7
12	MCU_PTE6	I/O	VCC_3V3	Display red 1
13	MCU_PTE15	I/O	VCC_3V3	Display green 2
14	MCU_PTE13	I/O	VCC_3V3	Display green 0
15	MCU_PTE16	I/O	VCC_3V3	Display green 3
16	MCU_PTE14	I/O	VCC_3V3	Display green 1
17	MCU_PTE17	I/O	VCC_3V3	Display green 4
18	MCU_PTE21	I/O	VCC_3V3	Display blue 0
19	MCU_PTE18	I/O	VCC_3V3	Display green 5
20	MCU_PTE22	I/O	VCC_3V3	Display blue 1
21	MCU_PTE19	I/O	VCC_3V3	Display green 6
22	MCU_PTE0	I/O	VCC_3V3	Display horizontal sync
23	MCU_PTE20	I/O	VCC_3V3	Display green 7
24	MCU_PTE1	I/O	VCC_3V3	Display vertical sync
25	MCU_PTE23	I/O	VCC_3V3	Display blue 2
26	MCU_PTE4	I/O	VCC_3V3	Display enable
27	MCU_PTE24	I/O	VCC_3V3	Display blue 3
28	MCU_PTE2	I/O	VCC_3V3	Display clock
29	GND	GND	Ground	Ground
30	VCC_3V3	PWR	VCC_3V3	Power

21.2 TFT Display

The FPC connector X29 connects to a 7" TFT panel with a resolution of 800x480 @ 24bpp manufactured by the HTDISPLAY ELECTRONICS CO., LTD. Connector X29 is located on the bottom side of the board. This display has no touch screen interface.

- **J1** Selects the source for the VCC_10V4 voltage to this display. The J1 jumper setting should not be changed.
- **JP30** Installing JP30 enables the TTL display power VCC_16V. Removing the jumper disables it. By default this jumper is installed and generally should not be removed.

Pin #	Signal	Туре	SL	Description
1, 2	VCC_9V6	PWR	VCC_9V6	9.6 V supply voltage
3, 4, 5	GND	GND	-	Ground
6	VDD_3V7	REF	VDD_3V7	3.7 V reference voltage
7	VCC_3V3	PWR	VCC_3V3	3.3 V supply voltage
8	DISP2_MODE	OUT	VCC_3V3	Display mode
9	MCU_PTE4	OUT	VCC_3V3	Display Enable
10	MCU_PTE1	OUT	VCC_3V3	Vertical Sync
11	MCU_PTE0	OUT	VCC_3V3	Horizontal Sync
12	MCU_PTE28	OUT	VCC_3V3	Blue 7
13	MCU_PTE27	OUT	VCC_3V3	Blue 6
14	MCU_PTE26	OUT	VCC_3V3	Blue 5
15	MCU_PTE25	OUT	VCC_3V3	Blue 4
16	MCU_PTE24	OUT	VCC_3V3	Blue 3
17	MCU_PTE23	OUT	VCC_3V3	Blue 2
18	MCU_PTE22	OUT	VCC_3V3	Blue 1
19	MCU_PTE21	OUT	VCC_3V3	Blue 0
20	MCU_PTE20	OUT	VCC_3V3	Green 7
21	MCU_PTE19	OUT	VCC_3V3	Green 6
22	MCU_PTE18	OUT	VCC_3V3	Green 5
23	MCU_PTE17	OUT	VCC_3V3	Green 4
24	MCU_PTE16	OUT	VCC_3V3	Green 3
25	MCU_PTE15	OUT	VCC_3V3	Green 2
26	MCU_PTE14	OUT	VCC_3V3	Green 1
27	MCU_PTE13	OUT	VCC_3V3	Green 0
28	MCU_PTE12	OUT	VCC_3V3	Red 7
29	MCU_PTE11	OUT	VCC_3V3	Red 6
30	MCU_PTE10	OUT	VCC_3V3	Red 5
31	MCU_PTE9	OUT	VCC_3V3	Red 4

Table 21-2. TTL Display Connector (X29)

Pin #	Signal	Туре	SL	Description
32	MCU_PTE8	OUT	VCC_3V3	Red 3
33	MCU_PTE7	OUT	VCC_3V3	Red 2
34	MCU_PTE6	OUT	VCC_3V3	Red 1
35	MCU_PTE5	OUT	VCC_3V3	Red 0
36	GND	-	-	Ground
37	MCU_PTE2	OUT	VCC_3V3	Clock
38	GND	-	-	Ground
39	MCU_PTB9	OUT	VCC_3V3	Left / right
40	MCU_PTB12	OUT	VCC_3V3	Up / down
41	VCC_16V	REF	VCC_16V	16 V reference voltage
42	VCC7V	REF	VCC7V	-7 V reference voltage
43	VCC_10V4	PWR	VCC_10V4	10.4 V supply voltage
44	RESETn	OUT	VCC_3V3	System reset
45	no-connect	-	-	
46	VDD_3V7	REF	VDD_3V7	3.7 V reference voltage
47	MCU_PTB8	OUT	VCC_3V3	Dither
48	GND	GND	-	Ground
49, 50	no-connect	-	-	

 Table 21-2.
 TTL Display Connector (X29) (Continued)

21.3 PHYTEC Display Interface

The PHYTEC Display Interface (PDI) is a standardized connection interface for connecting to various PHYTEC provided displays. One connector provides data and control (X30A), while the other provides power and auxiliary control (X30B). The PDI uses LVDS for the display data signaling; and SPI, I²C, and USB as potential control sources.

The Carrier Board provides an LVDS transmitter IC to convert the TTL level signals provided by the Vybrid processor into the LVDS level signals required by the PHYTEC Display Interface.

JP4 Enables the LVDS transmitter U3 for the PHYTEC Display Interface at X30. To enable the interface, jumper JP4 must be removed.

Table 21-3 and Table 21-4 below give detailed descriptions of the signals on connectors X30A and X30B.

Pin #	Signal	Туре	SL	Description
1	GND	-	-	Ground 0 V
2	VCC_3V3	PWR	VCC_3V3	3.3 V supply voltage
3	GND	-	-	Ground 0 V
4	VCC_5V0	PWR	VCC_5V0	5.0 V supply voltage

Table 21-3. PDI Connector (X30A) Signal Descriptions

Pin #	Signal	Туре	SL	Description
5	GND	-	-	Ground 0 V
6	VCC_5V0	PWR	VCC_5V0	5.0 V supply voltage
7	GND	-	-	Ground 0 V
8	VCC_5V0	PWR	VCC_5V0	5.0 V supply voltage
9	GND	-	-	Ground 0 V
10	MCU_PTB0	IO	VCC_3V3	Ground 0 V
11	no-connect	-	-	not connected
12	no-connect	-	-	not connected

 Table 21-3.
 PDI Connector (X30A) Signal Descriptions (Continued)

 Table 21-4.
 PDI Connector (X30B) Signal Descriptions

Pin #	Signal	Туре	SL	Description
1	MCU_PTB22	OUT	VCC_3V3	SPI 0 clock
2	MCU_PTB21	IN	VCC_3V3	SPI 0 master data in; slave data out
3	MCU_PTB20	OUT	VCC_3V3	SPI 0 master data out; slave data in
4	MCU_PTB19	OUT	VCC_3V3	SPI 0 chip select display adapter
5	no-connect			not connected
6	VCC_3V3	PWR	VCC_3V3	Logic supply voltage ^a
7	I2C_SCL	OUT	VCC_3V3	I2C clock signal
8	I2C_SDA	IO	VCC_3V3	I2C data signal
9	GND	-	-	Ground
10	MCU_PTB0	OUT	VCC_3V3	PWM brightness control
11	VCC_3V3	PWR	VCC_3V3	Logic supply voltage ^a
12	no-connect	-	-	not connected
13	MCU_PTB3	OUT	VCC_3V3	Display enable signal
14	no-connect	-	-	not connected
15	GND	-	-	Ground
16	USB1_DP	10	-	USB Data plus
17	USB1_DM	10	-	USB Data minus
18	GND	-	-	Ground
19	DISP_LVDS_0-	LVDS	VCC_3V3	LVDS data channel 0 negative output
20	DISP_LVDS_0+	LVDS	VCC_3V3	LVDS data channel 0 positive output
21	GND	-	-	Ground
22	DISP_LVDS_1-	LVDS	VCC_3V3	LVDS data channel 1 negative output
23	DISP_LVDS_1+	LVDS	VCC_3V3	LVDS data channel 1 positive output
24	GND	-	-	Ground
25	DISP_LVDS_2-	LVDS	VCC_3V3	LVDS data channel 2 negative output
26	DISP_LVDS_2+	LVDS	VCC 3V3	LVDS data channel 2 positive output

Pin #	Signal	Туре	SL	Description
27	GND	-	-	Ground
28	DISP_LVDS_3-	LVDS	VCC_3V3	LVDS data channel 3 negative output
29	DISP_LVDS_3+	LVDS	VCC_3V3	LVDS data channel 3 positive output
30	GND	-	-	Ground
31	LVDS_CLKOUTM	LVDS	VCC_3V3	LVDS clock channel negative output
32	LVDS_CLKOUTP	LVDS	VCC_3V3	LVDS clock channel positive output
33	GND	-	-	Ground
34	TS_X+	Analog	VCC_3V3	Touch X+
35	TS_X-	Analog	VCC_3V3	Touch X-
36	TS_Y+	Analog	VCC_3V3	Touch Y+
37	TS_Y-	Analog	VCC_3V3	Touch Y-
38	TS_WP	OUT	-	Touch write-protect
39	GND	-	-	Ground
40	LS_ANA	Analog	-	Light sensor output

 Table 21-4.
 PDI Connector (X30B) Signal Descriptions (Continued)

a. Provided to supply any logic on the display adapter.

21.4 Touch Screen

A touch screen controller at U14 on the Carrier Board provides a 4-wire resistive touch interface for displays connected to the PHYTEC Display Interface. Note that this touch screen controller does not provide touch screen capabilities to the TFT LCD display that connects at X29.

The touch screen controller connects to the Vybrid via I2C2 at address 0x41 (7 MSB).

21.5 Light Sensor

An 8-bit ADC at U21 on the Carrier Board provides the analog input required for reading a light sensor located on one of the PDI compatible PHYTEC displays. The ADC connects to the Vybrid via I2C2 at address 0x64 (MSB).

22 SD/MMC

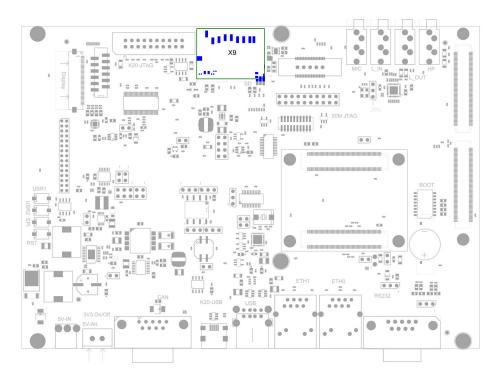


Fig. 22-1. SD/MMC Interface

The phyCORE-Vybrid Carrier Board provides a standard Secure Digital Memory SDHC card slot at X9 for connection to SD / MMC cards. Power to the SD interface is supplied by inserting the appropriate card into the SD / MMC connector.

23 Audio

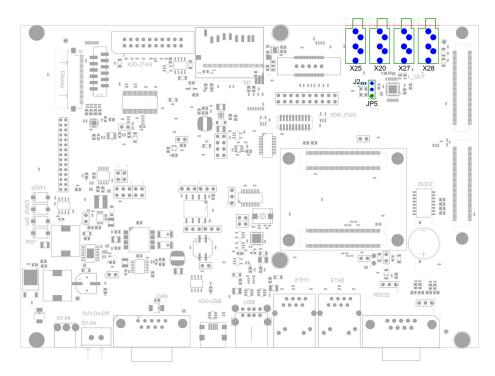


Fig. 23-1. Audio Interface

The audio interface provides a method of exploring the VFx00's audio capabilities. The phyCORE-Vybrid Carrier Board is populated with a Freescale Semiconductors SGTL5000 audio codec at U12. The SGTL5000 is connected to the VFx00's audio interface to support mono microphone input, stereo headphone output, stereo line out, and stereo line in. The phyCORE-Vybrid accesses the SGTL5000 registers via the I2C2 interface at address 0x0A (7-bit MSB addressing).

The Carrier Board's audio interface includes two hardware configuration jumpers J2 and JP5. These are described in detail below.

- J2 Enables the crystal oscillator which can be selected for the audio master clock by JP5. The default configuration J2=2+3 disables this oscillator.
- JP5 Selects the audio codec's master clock source (MCLK). The audio codec's master clock input accepts frequencies from 12.288 MHz to 50 MHz. In the default position JP5=2+3 the codec is clocked from the module's MCU_PTA11 audio clock signal. The MCU_PTA11 signal is also used for the K20 debug interface. To use the K20 and audio functions at the same time, the audio codec can instead be clocked by the crystal oscillator by setting JP5=1+2.

Audio devices can be connected at X20, X25, X27 and X28. The audio connectors descriptions are listed in Table 23-1.

Table 23-1. Audio Co	nnectors
----------------------	----------

Connector	Description
X20	Stereo line in
X25	Mono microphone in
X27	Stereo line out
X28	Stereo headphone out

24 JTAG

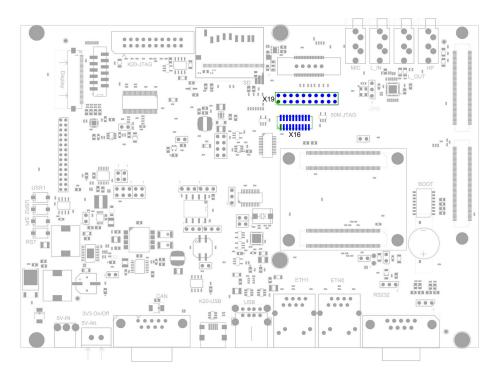


Fig. 24-1. JTAG Connectivity

The JTAG interface of the phyCORE-Vybrid is accessible at connectors X16 and X19 on the Carrier Board. This interface is compliant with JTAG specification IEEE 1149.1 and IEEE 1149.7.

- **X16** Provides JTAG signal access with a limited number of trace signals on a 1.27mm header.
- **X19** Provides JTAG signal access on a standard 2.54mm ARM-JTAG header

The signal connections for each of these connectors are described in the tables below. When referencing contact numbers, note that pin 1 is located at the beveled corner.

Pin #	Signal	Туре	SL	Description
1	VCC_3V3	PWR	VCC_3V3	3.3 V Power
2	MCU_PTA11	IN	VCC_3V3	JTAG Chain Test Mode Select signal
3	GND	-	-	Ground
4	MCU_PTA8	IN	VCC_3V3	JTAG Chain Test Clock signal
5	GND	-	-	Ground
6	MCU_PTA10	OUT	VCC_3V3	JTAG Chain Test Data Output
7	no-pin	-	-	Should be removed from the connector
8	MCU_PTA9	IN	VCC_3V3	JTAG Chain Test Data Input

 Table 24-1.
 JTAG Connector X16 Signals

Pin #	Signal	Туре	SL	Description
9	no-connect	-	-	
10	RESETn	IO	VCC_3V3	System Reset
11	5 V Supply	PWR	VCC_5V0	5 V Supply
12	MCU_PTA12	IN	VCC_3V3	Trace clock
13	5 V Supply	PWR	VCC_5V0	5 V Supply.
14	MCU_PTA16	IO	VCC_3V3	Trace Data 0
15, 17, 19	GND	-	-	Ground
16	MCU_PTA17	IO	VCC_3V3	Trace D1
18	MCU_PTA18	IO	VCC_3V3	Trace D2
20	MCU_PTA19	IO	VCC_3V3	Trace D3

Table 24-1. JTAG Connector X16 Signals (Continued)

Table 24-2. JTAG Connector X19 Signals

Pin #	Signal	Туре	SL	Description
1, 2	VCC_3V3	REF	VCC_3V3	JTAG Chain Reference Voltage
3	TRSTn	IN	VCC_3V3	JTAG Chain Test Reset
4, 6, 8, 10, 12, 14, 18, 20	GND	-	-	Ground
5	MCU_PTA9	IN	VCC_3V3	JTAG Chain Test Data Input
7	MCU_PTA11	IN	VCC_3V3	JTAG Chain Test Mode Select signal
9	MCU_PTA8	IN	VCC_3V3	JTAG Chain Test Clock signal
11	no-connect	-	-	JTAG Chain Return Test Clock signal
13	MCU_PTA10	OUT	VCC_3V3	JTAG Chain Test Data Output
15	SRST	OUT	VCC_3V3	System Reset

25 Trace

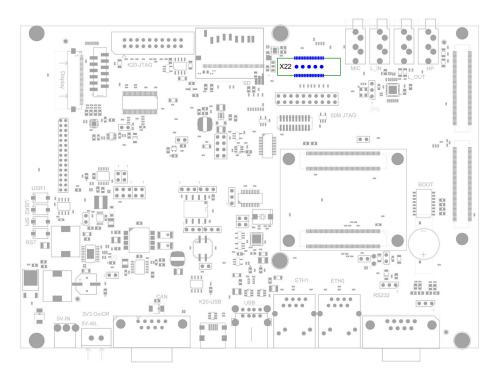
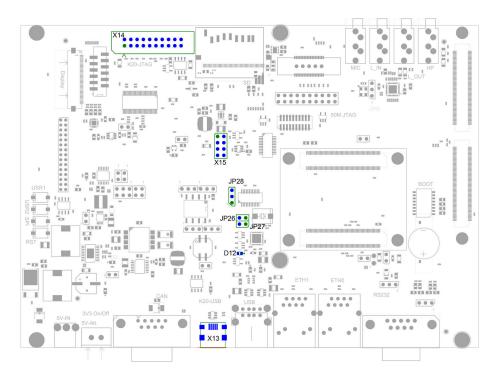
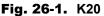


Fig. 25-1. Trace

MICTOR Connector X22 is an optional feature which provides direct connectivity to the phyCORE-Vybrid processor Trace interface. *This connector does not come standard; it must be special ordered.* Table 25-1 shows the signal locations and descriptions on connector X22.


Table 25-1	. Trace	Connector	X22 Pins
------------	---------	-----------	----------


Pin #	Signal	Туре	SL	Description
1-4	no-connect	-	-	
5	GND	-	-	Ground
6	MCU_PTA12	IO	VCC_3V3	Trace clock
7-8	no-connect	-	-	
9	RESETn	OUT	VCC_3V3	System reset
10	no-connect	-	-	
11	MCU_PTA10	OUT	VCC_3V3	JTAG Chain Test Data Output
12	VCC_3V3	PWR	VCC_3V3	3.3 V Supply
13	RTCK_X22	OUT	VCC_3V3	JTAG Chain Return Clock
14	VCC_3V3	PWR	VCC_3V3	3.3 V Supply
15	MCU_PTA8	IN	VCC_3V3	JTAG Chain Test Clock signal
16	MCU_PTA23	IO	VCC_3V3	Trace Data 7
17	MCU_PTA11	IN	VCC_3V3	JTAG Chain Test Mode Select signal
18	MCU_PTA22	IO	VCC_3V3	Trace Data 6
19	MCU_PTA9	IN	VCC_3V3	JTAG Chain Test Data Input signal

Pin #	Signal	Туре	SL	Description
20	MCU_PTA21	IO	VCC_3V3	Trace Data 5
21	TRSTn_X22	IN	VCC_3V3	JTAG Chain Target Reset signal
22	MCU_PTA20	IO	VCC_3V3	Trace Data 4
23	MCU_PTA31	IO	VCC_3V3	Trace Data 15
24	MCU_PTA19	IO	VCC_3V3	Trace Data 3
25	MCU_PTA30	IO	VCC_3V3	Trace Data 14
26	MCU_PTA18	IO	VCC_3V3	Trace Data 2
27	MCU_PTA29	IO	VCC_3V3	Trace Data 13
28	MCU_PTA17	IO	VCC_3V3	Trace Data 1
29	MCU_PTA28	IO	VCC_3V3	Trace Data 12
30	no-connect	-	-	
31	MCU_PTA27	IO	VCC_3V3	Trace Data 11
32	no-connect	-	-	
33	MCU_PTA26	IO	VCC_3V3	Trace Data 10
34	no-connect	-	-	
35	MCU_PTA25	IO	VCC_3V3	Trace Data 9
36	MCU_PTB13	IO	VCC_3V3	Trace Control
37	MCU_PTA24	IO	VCC_3V3	Trace Data 8
38	MCU_PTA16	IO	VCC_3V3	Trace Data 0
39 - 43	GND	-	-	Ground

 Table 25-1.
 Trace Connector X22 Pins (Continued)

26 K20

USB Mini-AB connector X13 provides OpenSDA and CMSIS-DAP access to the Vybrid processor for debugging purposes.

OpenSDA and CMSIS-DAP debugging are implemented through a Freescale K20 processor (U13) on the Carrier Board. When connector X13 is not connected to a USB host, the K20 processor is held in reset.

Jumpers JP26 and JP27 can be installed to connect the K20 to the Vybrid's SCI1 interface. In order to avoid signal conflicts with the Vybrid's default serial communication, these are not normally installed. In addition, to save time, the K20 processor can be used to program the SPI Flash EEPROMs on the phyCORE-Vybrid quickly.

To program the SPI Flash devices on the SOM through the K20, the system must be held in reset and jumper JP28 must be configured to select one of the two Flash devices as the programming target. As of the writing of this manual, software support for programming the SPI Flashes through the K20 circuit is not available.

The system can be reset directly with the K20's GPIO signal PTB1, or there are options for putting the system in reset with a jumper across X15 pins. Table 26-1 shows options to put the system in reset with X15 and the JP28 jumper settings to select the target device.

Jumper	Setting	Description	Chapter
X15	1+2	26	
	3+4	The system is reset with the K20 SPI0 chip select signal K20_SPI0_CS.	
	5+6	The system is reset with the K20 GPIO signal K20_GPIO_PTD6	
	7+8	The system is reset while this jumper is installed	
JP28	1+2	Select SPI Flash A	26
	2+3	Select SPI Flash B	

 Table 26-1.
 K20 Jumper Configurations

27 Tamper

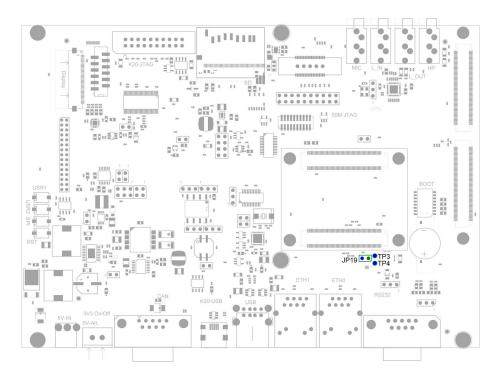


Fig. 27-1. Tamper

The phyCORE-Vybrid provides access to two passive (TAMPER[1:0]) and two active (TAMPER[3:2]) tamper detection signals from the VFx00. Security violations from the VFx00 tamper detection mechanism can be enabled to be a source of reset.

In addition to routing all four of these signals to the GPIO Expansion Connector, the phyCORE-Vybrid Carrier Board provides test pads TP3 and TP4 on the TAMPER[1:0] signals and jumper JP19 across the TAMPER[3:2] signals.

JP19 allows testing of the Vybrid's Tamper2/Tamper3 active physical tamper security circuit.

Pin#	Signal	Туре	SL	Connects to
D10	EXT_TAMPER0	IN	3.3 V	Test-point TP3
D11	EXT_TAMPER1	IN	3.3 V	Test-point TP4
D12	EXT_TAMPER2	IO	3.3 V	Jumper JP19.1
D13	EXT_TAMPER3	IO	3.3 V	Jumper JP19.2

 Table 27-1.
 Tamper Signals at Connector X21

Part III: PCM-957/GPIO Expansion Board

Part 3 of this three part manual provides detailed information on the GPIO Expansion Board and how it enables easy access to most phyCORE-Vybrid SOM signals.

The information in the following chapters is applicable to the 1351.0 PCB revision of the GPIO Expansion Board.

28 Introduction

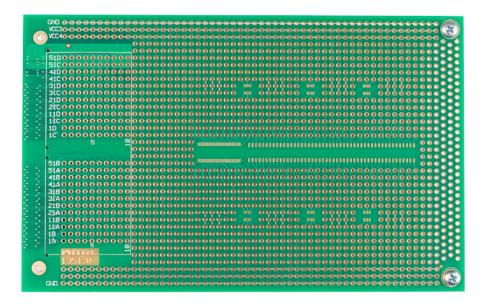


Fig. 28-1. PCM-957/GPIO Expansion Board and Patch Field

The GPIO Expansion Connectors at X21 on the Carrier Board provide access to many of the phyCORE-Vybrid signals. Although a large majority of the SOM signals are made available at X21, not all processor signals are routed to X21. In addition, X21 may contain some signals which are not connected to the processor at all, but instead to circuits only on the Carrier Board.

As an accessory, a GPIO Expansion Board (PCM-957) is made available through PHYTEC to connect to the GPIO Expansion Connectors. This Expansion Board provides a patch field for easy access to signals and additional board space for testing and prototyping.

Tables detailing signal mapping between the phyCORE connectors and the patch field on the GPIO Expansion Board are provided in the following chapters.

29 Analog Signal Mapping

The processor's analog signals on the GPIO Expansion Board are shown below.

Signal	SOM Pin	GPIO EB Pin	Туре	SL	Description
Signal	JOW PIN	GFIC EB FIII	Type	JL	Description
VADCSE0	53A	53A	IO	VCC_3V3	analog IO
VADCSE1	54A	54A	10	VCC_3V3	analog IO
VADCSE2	55A	55A	Ю	VCC_3V3	analog IO
VADCSE3	56A	56A	IO	VCC_3V3	analog IO
DACO0	58A	58A	10	VCC_3V3	analog IO
DACO1	59A	59A	Ю	VCC_3V3	analog IO
ADC0SE8	55B	55B	IO	VCC_3V3	analog IO
ADC0SE9	56B	56B	10	VCC_3V3	analog IO
ADC1SE8	57B	57B	Ю	VCC_3V3	analog IO
ADC1SE9	58B	58B	Ю	VCC_3V3	analog IO
VREFL_ADC	60B	60B	REF	VCC_3V3	Analog reference voltage high
VREFH_ADC	60A	60A	REF	VCC_3V3	Analog reference voltage low

Table 29-1. Analog Signal Map

30 Control Signal Mapping

Various control signals and other Carrier Board circuitry made available on the GPIO Expansion Board are shown below.

Table 30-1. Control Signal Map

Signal	SOM Pin	GPIO EB Pin	Туре	SL	Description
RESETn	5C	5C	IPU	VCC_3V3	System reset
VDD_1V5_EN	6C	6C	IPU	VCC_3V3	RESERVED
PHYWIRE	-	16C	Ю	VCC_3V3	PHYWIRE to the PHYTEC Display Interface
TS_WP	-	17C	IN	VCC_3V3	Touch screen wiper contact (5-wire only) for PHYTEC Display Interface
NF_WPn	10B	10B	IPU	VCC_3V3	Write-protect for NAND Flash on SOM
CAN_EN	10A	10A	IPU	VCC_3V3	Enable for CAN transceivers on SOM
EXT_TAMPER0	10D	10D	IO	VCC_3V3	Vybrid Tamper0 security signal
EXT_TAMPER1	11D	11D	10	VCC_3V3	Vybrid Tamper1 security signal
EXT_TAMPER2	12D	12D	10	VCC_3V3	Vybrid Tamper2 security signal
EXT_TAMPER3	13D	13D	Ю	VCC_3V3	Vybrid Tamper3 security signal

31 Processor Signal Mapping

Processor signals on the GPIO Expansion Board are shown below.

Table 31-1. Processor Signal Map

Signal	SOM Pin	GPIO EB Pin	Туре	SL	Description
MCU_PTA6	52B	52B	Ю	VCC_3V3	RMII Clock
MCU_PTB1	1B	1B	IO	VCC_3V3	Audio Data Out
MCU_PTB2	2B	2B	10	VCC_3V3	Vybrid configuration signal. This signal must be low during system reset
MCU_PTB3	3B	3B	Ю	VCC_3V3	Display Enable for PHYTEC Display Interface
MCU_PTB6	5A	5A	IO	VCC_3V3	SCI2_Tx
MCU_PTB7	6A	6A	IO	VCC_3V3	SCI2_Rx
MCU_PTB10	7B	7B	IO	VCC_3V3	Interrupt in from the touch-screen controller or control signal out to User LED1. Resistor R138 must be installed to connect this signal to LED1.
MCU_PTB18	11B	11B	IO	VCC_3V3	GPIO
MCU_PTB19	12B	14C	IO	VCC_3V3	SPI_CS to the PHYTEC Display Interface
MCU_PTB20	13B	13C	IO	VCC_3V3	SPI_MOSI to the PHYTEC Display Interface
MCU_PTB21	13A	18B	Ю	VCC_3V3	SPI_MISO to the PHYTEC Display Interface
MCU_PTB22	14A	11C	IO	VCC_3V3	SPI_SCK to the PHYTEC Display Interface
MCU_PTB23	15A	15A	10	VCC_3V3	Can connect the RTC interrupt from the SOM back to the Vybrid
MCU_PTB24	16A	16A	IO	VCC_3V3	NAND Flash write enable
MCU_PTB25	15B	15B	IO	VCC_3V3	NAND Flash chip enable
MCU_PTB26	16B	16B	IO	VCC_3V3	GPIO
MCU_PTB27	17B	17B	IO	VCC_3V3	NAND Flash read enable
MCU_PTB28	18B	18B	IO	VCC_3V3	GPIO
MCU_PTC0	40B	40B	IO	VCC_3V3	RMII0_MDC
MCU_PTC1	41B	41B	IO	VCC_3V3	RMII1_MDIO
MCU_PTC2	42B	42B	IO	VCC_3V3	RMII0_CRS
MCU_PTC3	43B	43B	IO	VCC_3V3	RMII0_RXD1
MCU_PTC4	43A	43A	IO	VCC_3V3	RMII0_RXD0
MCU_PTC5	44A	44A	IO	VCC_3V3	RMII0_RXER
MCU_PTC6	45A	45A	IO	VCC_3V3	RMII0_TXD1
MCU_PTC7	46A	46A	IO	VCC_3V3	RMII0_TXD0
MCU_PTC9	46B	46B	10	VCC_3V3	RMII1_MDC
MCU_PTC10	47B	47B	10	VCC_3V3	RMII1_MDIO
MCU_PTC11	48B	48B	10	VCC_3V3	RMII1_CRS
MCU_PTC12	50B	50B	10	VCC_3V3	RMII1_RXD1
MCU_PTC13	48A	48A	10	VCC_3V3	RMII1_RXD0
MCU_PTC14	49A	49A	Ю	VCC_3V3	RMII1_RXER

Signal	SOM Pin	GPIO EB Pin	Туре	SL	Description
MCU_PTC15	50A	50A	IO	VCC_3V3	RMII1_TXD1
MCU_PTC16	51A	51A	IO	VCC_3V3	RMII1_TXD0
MCU_PTC17	51B	51B	Ю	VCC_3V3	RMII1_TXEN
MCU_PTC26	28A	28A	IO	VCC_3V3	NAND Flash Ready / Busy
MCU_PTC27	29A	29A	IO	VCC_3V3	NAND Flash Address Latch Enable
MCU_PTC28	30A	30A	IO	VCC_3V3	NAND Flash Command Latch Enable
MCU_PTC29	31A	31A	IO	VCC_3V3	GPIO
MCU_PTC30	33A	33A	IO	VCC_3V3	GPIO
MCU_PTC31	30B	30B	IO	VCC_3V3	GPIO
MCU_PTD7	31B	31B	IO	VCC_3V3	QSPI0_B_CLK
MCU_PTD8	32B	32B	IO	VCC_3V3	QSPI0_B_CS
MCU_PTD9	33B	33B	IO	VCC_3V3	QSPI0_B_D3
MCU_PTD10	35B	35B	IO	VCC_3V3	QSPI0_B_D2
MCU_PTD11	36B	36B	IO	VCC_3V3	QSPI0_B_D1
MCU_PTD12	37B	37B	IO	VCC_3V3	QSPI0_B_D0
MCU_PTD13	38B	38B	IO	VCC_3V3	GPIO
MCU_PTD16	18A	18A	IO	VCC_3V3	NAND Flash IO0
MCU_PTD17	19A	19A	IO	VCC_3V3	NAND Flash IO1
MCU_PTD18	20A	20A	IO	VCC_3V3	NAND Flash IO2
MCU_PTD19	21A	21A	IO	VCC_3V3	NAND Flash IO3
MCU_PTD20	20B	20B	10	VCC_3V3	NAND Flash IO4
MCU_PTD21	21B	21B	IO	VCC_3V3	NAND Flash IO5
MCU_PTD22	22B	22B	IO	VCC_3V3	NAND Flash IO6
MCU_PTD23	23B	23B	IO	VCC_3V3	NAND Flash IO7
MCU_PTD24	23A	23A	IO	VCC_3V3	NAND Flash IO8
MCU_PTD25	24A	24A	IO	VCC_3V3	NAND Flash IO9
MCU_PTD26	25A	25A	IO	VCC_3V3	NAND Flash IO10
MCU_PTD27	26A	26A	IO	VCC_3V3	NAND Flash IO11
MCU_PTD28	25B	25B	IO	VCC_3V3	NAND Flash IO12
MCU_PTD29	26B	26B	10	VCC_3V3	NAND Flash IO13
MCU_PTD30	27B	27B	10	VCC_3V3	NAND Flash IO14
MCU_PTD31	28B	28B	10	VCC_3V3	NAND Flash IO15
MCU_PTE3	45C	8C	10	VCC_3V3	GPIO
CANL1	16C	19C	10	VCC_3V3	MCU_PTB16 through CAN transceiver on SOM
CANH1	15C	20C	10	VCC_3V3	MCU_PTB17 through CAN transceiver on SOM

Table 31-1. Processor Signal Map (Continued)

32 Power Signal Mapping

The power signals on the GPIO Expansion Board are shown below.

Table 32-1. Power Signal Map

Carrier Board Signal	GPIO EB Pin	GPIO EB Signal
GND	49C, 50C, 51C, 49D, 50D, 51D	VCC4
VCC_3V3	52C, 53C, 54C, 52C, 53D, 54D	VCC3
GND	55C, 56C, 57C, 55D, 56D, 57D	VCC2
VCC_5V0	58C, 59C, 60C, 58D, 59D, 60D	VCC1

Revision History

Date	Version Number	Changes in this Manual
12/11/12	L-783e_0	Preliminary release
01/08/13	L-783e_1	Component Placement Diagrams added