
 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 1/40

Application Note No. LAN-071e_0
Version: Preliminary
Author: R. Stidronski
Date: 24.10.2016

Historie:

Version Changes Date Author

Preliminary First draft 24.10.2016 R. Stidronski

phyBOARD®-Segin i.MX 6UL Alpha Kit
Getting Started

Content

1 Introduction .. 3
2 Requirements... 3
3 Getting Started with the included SD Card .. 4

3.1 Connector Interfaces ... 4
3.2 Booting from the SD Card ... 5

4 Building the BSP ... 7
4.1 Get the BSP ... 7
4.2 Basic Set-Up .. 7
4.3 Selecting a Software Platform.. 8
4.4 Starting the Build Process .. 8
4.5 BSP Images ... 8

Pr
el

im
in

ar
y

Application Note

2/40 © PHYTEC Messtechnik GmbH 2016

5 Booting the System ... 9
5.1 Booting from SD Card... 9

5.1.1 Using a single, prebuild SD Card Image... 9
5.1.2 Using four individual Images (barebox-, kernel- and device tree image, and

root filesystem) ... 10
5.1.3 Booting from USB OTG (Serial Downloader) ... 12

5.2 Booting the Kernel from Network ... 13
5.2.1 Development Host Preparations.. 13
5.2.2 Preparations on the Embedded Board .. 14
5.2.3 Booting the Embedded Board ... 15

5.3 Custom Boot Setup.. 15
6 Updating the Software ... 17

6.1 Updating from Network .. 17
6.1.1 Updating NAND Flash from Network ... 17

6.2 Updating from SD Card ... 18
6.2.1 Updating NAND Flash from SD Card .. 19

7 Device Tree (DT).. 20
7.1 Introduction .. 20
7.2 Phytec phyBOARD-Segin i.MX 6UL BSP Device Tree Concept 20

7.2.1 Switching Expansion Boards and Displays ... 21
7.2.2 Handle the Different Displays ... 22

8 Accessing Peripherals .. 23
8.1 i.MX 6UL Pin Muxing .. 24
8.2 Serial TTYs ... 25
8.3 Network .. 26
8.4 CAN Bus .. 26
8.5 MMC/SD Card ... 28
8.6 NAND Flash .. 29
8.7 LEDs ... 30
8.8 I2C Bus.. 30

8.8.1 EEPROM ... 30
8.8.2 RTC ... 31
8.8.3 Capacitive Touchscreen ... 31

8.9 USB Host Controller... 32
8.10 USB OTG.. 32

8.10.1 Using the Board as USB Device ... 32
8.11 Audio ... 34

8.11.1 Audio Sources and Sinks.. 35
8.11.2 Playback .. 36
8.11.3 Capture.. 36

8.12 Framebuffer ... 36
8.12.1 Backlight Control ... 37
8.12.2 Resistive Touchscreens.. 38

9 Customizing the BSP.. 39
9.1 Changing MTD Partitions .. 39

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 3/40

1 Introduction

This Quickstart describes the tools and provides the know-how to install and work with the
Linux Board Support Package (BSP) for the phyBOARD-Segin i.MX 6UL Alpha Kit. This
Quickstart shows you how to do everything from installing the appropriate tools and
sources, to building custom kernels, to deploying the OS in order to operate the software
and hardware.

2 Requirements

The following system requirements are necessary to successfully complete this Quickstart.
Deviations from these requirements may suffice, or may have other workarounds.

Hardware:
• phyBOARD-Segin (PB-02013) Single Board Computer (SBC)
• phyCORE-i.MX 6UL (PCL-063) already soldered on the phyBOARD-Segin
• Evaluation Adapter Board(PEB-EVAL-01)
• Power Adapter Board (PEB-POW-01)
• Serial cable (RS-232)
• AC adapter supplying 12 V – 24 V DC/ min. 2 A

Software:
• A modern Linux Operating host system either natively or via a virtual machine:

o Ubuntu 14.04 LTS 64-bit recommended. Other distributions will likely work, but
note that some setup information as well as OS specific commands and paths may
differ.

o If you want to use a virtual machine, VMWare Workstation, VMWare Player, and
VirtualBox are possible solutions.

• Root access to your Linux host PC. Some commands in the Quickstart will not work if
you do not have sudo access (e.g. package installation, formatting an SD card).

• At least 40 GB to 50 GB free on the build partition of the host PC.

• An SD card reader operational under Linux.

o If you do not have SD card access under Linux on your host PC then formatting,
copying the bootloader, and mounting the root file system on an SD card will not
be possible.

• An active internet connection.

Pr
el

im
in

ar
y

Application Note

3 Getting Started with the included SD Card

This section is designed to get the board up and running with the SD Card included in the
kit, which is prepared with the pre-built images.

3.1 Connector Interfaces

The following picture shows the phyBOARD-Segin Alpha Kit which is used in this Quickstart
and highlights the location of the different interfaces on the board.

Figure 1: phyBOARD-Segin Alpha Kit

An overview of additional connectors and interfaces of the phyBOARD-Segin can be found
in the next picture.

4/40 © PHYTEC Messtechnik GmbH 2016

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

Figure 2: phyBOARD-Segin i.MX 6

3.2 Booting from the SD Card

This section describes how to boot the phyBOARD-Segin with the pre-built images on the
included SD card.

 Insert the micro SD card into the SD card slot on the bottom side of board.

 Connect an RS-232 cable to the Evaluation Adapter Board. The UART1 interface (Debug
interface) is already at RS-232 level.

 Start your favorite terminal software (e.g. Minicom,or Tera Term) on your host PC and
configure it for 115200 baud, 8 data bits, no parity, and 1 stop bit (8n1) with no
handshake.

 Ensure that boot mode jumper JP1 is closed

 Connect the power supply to the Power Adapter Board (please note the polarity shown
in Figure 1).

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 5/40

Pr
el

im
in

ar
y

Application Note

6/40 © PHYTEC Messtechnik GmbH 2016

The Power LEDs on the Power Adapter Board as well as the Powerinput LED on the
phyBOARD-Segin will light up and the board starts booting into Linux. The console output
can be viewed in your terminal window. If everything was done correctly the login prompt
will be shown at the end of the booting process:

Yogurt (Phytec Example Distribution) phyBOARD-Segin-i.MX6UL-ALPHA1 phyboard-segin-
imx6ul-1 ttymxc0

phyboard-segin-imx6ul-1 login:

The default login account is root with an empty password.

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 7/40

4 Building the BSP

This section will guide you through the general build process of the unified i.MX 6 BSP
using the phyLinux script. If you want to use our software without phyLinux and the Repo
tool managed environment instead, you can find all Git repositories on:
git://git.phytec.de

Used U-Boot repository:
git://git.phytec.de/barebox

Our barebox version is based on the barebox mainline and adds only a few patches which
will be sent upstream in future. Used Linux kernel repository:
git://git.phytec.de/linux-mainline

Our i.MX 6 UL kernel is based on the Linux kernel. The kernel repository can be found at:
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

To find out which tag is used for a specific board, have a look at:
meta-phytec/recipes-bsp/ barebox/barebox_*.bb
meta-phytec/recipes-kernel/linux/linux-mainline_*.bb

4.1 Get the BSP

 Create a fresh project directory, e.g.
host$ mkdir ~/yocto

 Download and run the phyLinux script
host$ cd ~/yocto
host$ wget ftp://ftp.phytec.de/pub/Software/Linux/Yocto/Tools/phyLinux
host$ chmod +x phyLinux
host$./phyLinux init

4.2 Basic Set-Up

There are a few important steps which have to be done, before the main build process.

 Setting up the host, see Yocto Reference Manual "Setting up the Host"

 Setting up the Git configuration, see Yocto Reference Manual "Git Configuration"

Pr
el

im
in

ar
y

http://devwiki.phytec.de/mediawiki/index.php/Yocto/Yocto_Reference_Manual#phyLinux_Documentation
ftp://ftp.phytec.de/pub/Software/Linux/Yocto/Tools/phyLinux

Application Note

8/40 © PHYTEC Messtechnik GmbH 2016

4.3 Selecting a Software Platform

 To select the correct SoC, BSP version and platform call:
host$./phyLinux init

It is also possible to pass this information directly using command line parameters:
host$./phyLinux init ‐p imx6 ‐r PDphyBOARD‐Segin‐i.MX6UL‐ALPHA1

Please read section "Initialization" in the Yocto Reference Manual for more information.

4.4 Starting the Build Process

Refer to Yocto Reference Manual "Start the Build".

4.5 BSP Images

All images generated by Bitbake are deployed to yocto/build/deploy/images/<machine>.

The following list shows for example all files generated for the i.MX 6 SoC,
phyboard-segin-imx6ul-1 machine:

• Barebox: barebox.bin

• Barebox configuration: barebox-defconfig

• Kernel: zImage

• Kernel device tree file: zImage-imx6ul-phytec-phyboard-segin-ff-rdk.dtb

• Kernel configuration: zImage.config

• Root filesystem: phytec-headless-image-phyboard-segin-imx6ul-1.tar.gz,

phytec-headless-image-phyboard-segin-imx6ul-1.ubifs,

phytec-headless-image-phyboard-segin-imx6ul-1.ext4

• SD card image: phytec-headless-image-phyboard-segin-imx6ul-1.sdcard Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

5 Booting the System

The default boot source for the i.MX 6 modules like phyCORE-i.MX 6 UL is the SD card. The
easiest way to get started with your freshly created images, is writing them to an SD card
and setting the boot configuration accordingly (JP1 closed).

Please ensure that JP1 is closed, as the Alpha Kit does not support booting
from NAND.

5.1 Booting from SD Card

Booting from SD card is useful in several situations, e.g. if the board does not start any
more due to a damaged bootloader. To boot from SD card the SD card must be formatted in
a special way, because the i.MX 6 does not use file systems. Instead it is hard coded at
which sectors of the SD card the i.MX 6 expects the bootloader.

There are two ways to create a bootable SD card. You can either use:
• a single prebuild SD card image, or
• the four individual images (barebox-, kernel- and device tree image, and root

filesystem)

5.1.1 Using a single, prebuild SD Card Image

The first possibility is to use the SD card image build by Bitbake, a tool integrated in Yocto.
This image has the ending *.sdcard and can be found under
build/deploy/images/<MACHINE>/<IMAGENAME>-<MACHINE>.sdcard. It contains all BSP
files in correctly formatted partitions already and can be easily copied to the SD card using
dd.

You can also find images on our FTP server ftp://ftp.phytec.de/pub/Software/Linux/BSP-
Yocto-i.MX6/.

Be very careful when selecting the right drive as all files on the selected
device will be erased! Selecting the wrong drive can erase your hard drive!

 Get the correct device name (<your_device>) with sudo fdisk –l or from the last
outputs of dmesg after inserting the SD card.

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 9/40

Pr
el

im
in

ar
y

ftp://ftp.phytec.de/pub/Software/Linux/BSP-Yocto-i.MX6/
ftp://ftp.phytec.de/pub/Software/Linux/BSP-Yocto-i.MX6/

Application Note

10/40 © PHYTEC Messtechnik GmbH 2016

 Now use the following command to create your bootable SD card
host$ sudo dd if=<IMAGENAME>‐<MACHINE>.sdcard of=/dev/<your_device>

bs=1MB conv=fsync
where <your_device> could be for example "sde", depending on your system.

The parameter conv=fsync forces a sync operation on the device before dd returns. This
ensures that all blocks are written to the SD card and are not still in memory.

5.1.2 Using four individual Images (barebox-, kernel- and device tree image, and root
filesystem)

Instead of using the single prebuild SD card image, you can also use the barebox-, kernel-
and device tree image together with the root filesystem separately to create a bootable SD
card manually.

For this method a new card must be setup with 2 partitions and 8 MB of free space at the
beginning of the card. Use the following procedure with fdisk under Linux:

 Create a new FAT partition with partition ID C. When creating the new partition you must
leave 8 MB of free space at the beginning of the card. When you go through the process
of creating a new partition, fdisk lets you specify where the first sector starts. fdisk will
return the new values as acknowledgement. If, for example, the first sector begins at
1000, and each sector is 512 bytes, then 8 MB / 512 bytes = 16384 sectors, thus your
first sector should begin at 17384 to leave 8 MB of free space. The size of the FAT
partition needs only be big enough to hold the zImage which is only a few megabytes.
To be safe we recommend a size of 64 MB.

 Create a new Linux partition with partition ID 83. Make sure you start this partition after
the last sector of partition 1! By default fdisk will try to use the first partition available
on the disk, which in this example is 1000. However, this is our reserved space! You
must use the remaining portion of the card for this partition.

 Write the new partition to the SD card and exit fdisk.

Example:

 Type:
host$ sudo fdisk ‐l /dev/sdc Pr

el
im

in
ar

y

 phyBOARD-Segin i.MX 6UL Alpha Kit

You will receive:
Disk /dev/sdc: 4025 MB, 4025483264 bytes
4 heads, 32 sectors/track, 61424 cylinders, total 7862272 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x26edf128

 Device Boot Start End Blocks Id System
/dev/sdc1 8192 24575 8192 c W95 FAT32 (LBA)
/dev/sdc2 24576 655359 315392 83 Linux

 Remove and reinsert the card. Otherwise Linux will not recognize the new partitions
created in the previous step.

 Create a file system on the partitions with (replace "sde" with your device):
host$ sudo mkfs.vfat /dev/sde1
host$ sudo mkfs.ext4 ‐L "rootfs" /dev/sde2

Now the images need to be copied to the SD card.

 Write the bootloader in front of the first partition (replace "sde" with your device):
host$ sudo dd if=barebox.bin of=/dev/sde bs=512 skip=2 seek=2

conv=fsync

 Mount the first partition (vfat) and copy the linuximage and oftree file to it:
host$ sudo mount /dev/sd<X>1 /mnt

Make sure that the images are named as mentioned before, as the
bootloader expects them exactly like that.

 In case you want to boot the whole Linux from SD card, also mount the ext4 partition.

 Then untar <IMAGENAME>-<MACHINE>.tar.gz rootfs image to it:
host$ sudo mount /dev/sd<X>2 /media
host$ sudo tar zxf <IMAGENAME>‐<MACHINE>.tar.gz ‐C /media/
host$ sudo umount /media

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 11/40

Pr
el

im
in

ar
y

Application Note

12/40 © PHYTEC Messtechnik GmbH 2016

5.1.3 Booting from USB OTG (Serial Downloader)

The i.MX 6UL ROM code is capable of downloading a bootloader from the USB OTG interface
("Serial Downloader" in the i.MX 6UL Reference Manual). This is useful for a last resort
recovery of a broken bootloader, or for rapid barebox development.

First you have to compile the program imx-usb-loader in the barebox source directory. You
can use any current mainline barebox version.

 First load the default configuration with:
host$ make ARCH=arm imx_v7_defconfig

 In order to activate imx-usb-loader type
host$ make ARCH=arm menuconfig

and enable System Type --> i.MX specific settings --> compile imx-usb-loader.

 Now, compile the imx-usb-loader:
host$ make ARCH=arm CROSS_COMPILE=<prefix of your arm cross toolchain>

scripts/imx/

Now the tool is in scripts/imx/imx-usb-loader.

To load the bootloader to the module execute the following sequence.

 Connect your target to your host PC via USB OTG.

 Check the boot configuration of your board and ensure that the ROM code enters Serial
Downloader mode (see the corresponding section in the Hardware Manual of your
board).

 As the boot configuration is not read during a soft reset, perform a power cycle.

 Finally execute the imx-usb-loader, e.g.
host$ sudo scripts/imx/imx‐usb‐loader images/barebox‐phytec‐phycore‐

imx6ul‐512mb.img

After that you should see the barebox boot messages on the serial console. Pr

el
im

in
ar

y

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 13/40

5.2 Booting the Kernel from Network

In this case booting from network means to load the kernel over TFTP and the root
filesystem over NFS. The bootloader itself must already be loaded from any other boot
device available.

5.2.1 Development Host Preparations

On the development host a TFTP server must be installed and configured. The following
tools will be needed to boot the kernel from Ethernet:
1. a TFTP server and
2. a tool for starting/stopping a service.

 For Ubuntu install:
host$ sudo apt‐get install tftpd‐hpa xinetd

After the installation of the packages you have to configure the TFTP server.

Set up for the TFTP server:

 Edit /etc/xinetd.d/tftp:
service tftp
{
 protocol = udp
 port = 69
 socket_type = dgram
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = ‐s /tftpboot
 disable = no
}

 Create a directory to store the TFTP files:
host$ sudo mkdir /tftpboot
host$ sudo chmod ‐R 777 /tftpboot
host$ sudo chown ‐R nobody /tftpboot

 Configure a static IP address for the appropriate interface:
host$ ifconfig eth1

You will receive:
eth1 Link encap:Ethernet HWaddr 00:11:6b:98:e3:47
 inet addr:192.168.3.10 Bcast:192.168.3.255

Mask:255.255.255.0

 Restart the services to pick-up the configuration changes:
host$ sudo service tftpd‐hpa restart

Pr
el

im
in

ar
y

Application Note

14/40 © PHYTEC Messtechnik GmbH 2016

 Now connect the first port of the board to your host system, configure the board to
network boot and start it.

Usually TFTP servers are using the /tftpboot directory to fetch files from. If you built your
own images, please copy them from the BSP’s build directory to there.

We also need a network connection between the embedded board and the TFTP server. The
server should be set to IP 192.168.3.10 and netmask 255.255.255.0.

After the installation of the TFTP server, an NFS server needs to be installed, too. The NFS
server is not restricted to a certain file system location, so all we have to do on most
distributions is to modify the file /etc/exports and export our root filesystem to the
embedded network. In this example file the whole work directory is exported, and the ”lab
network” address of the development host is 192.168.3.10, so the IP addresses have to be
adapted to the local needs:
/home/<user>/<rootfspath>

192.168.3.10/255.255.255.0(rw,no_root_squash,sync,no_subtree_check)

Where <user> must be replaced with your home directory name. The <rootfspath> can be
set to a folder which contains a rootfs tar.gz image extracted with sudo.

5.2.2 Preparations on the Embedded Board

 To find out the Ethernet settings in the bootloader of the target type:
bootloader$ ifup eth0
bootloader$ devinfo eth0

With your development host set to IP 192.168.3.10 and netmask 255.255.255.0, the
target should return:
ipaddr=192.168.3.11
netmask=255.255.255.0
gateway=192.168.3.10
serverip=192.168.3.10

 If you need to change something, type:
bootloader$ edit /env/network/eth0

Here you can also change the IP address to DHCP instead of using a static one.

 Just configure: ip=dhcp

 Edit the settings if necessary and save them by leaving the editor with CTRL+D.

 Type saveenv if you made any changes.

 Set up the paths for TFTP and NFS in the file /env/boot/net.

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 15/40

5.2.3 Booting the Embedded Board

 To boot from network call
bootloader$ boot net

or restart the board and press m to stop autoboot.

You will get a menu:
Main menu
1: Boot default
2: Detect bootsources
3: Settings
4: Save environment
5: Shell
6: Reset

 Press 2 and then Enter which opens a second menu:

boot
1: mmc
2: nand
3: spi
4: net
5: back

 Press 4 and then Enter in order to boot the board from network.

5.3 Custom Boot Setup

You may have custom boot requirements that are not covered by the four available boot
files (nand, net, mmc, spi). If this is the case you can create your own custom boot entry
specifying the kernel and root filesystem location.

 First create your own boot entry in barebox, for example named "custom":
bootloader$ edit /env/boot/custom

 Use the following template to specify the location of the Linux kernel and root
filesystem.
#!/bin/sh

global.bootm.image="<kernel_loc_bootm.image>"
global.bootm.oftree="<dts_loc_bootm.oftree>"

nfsroot="<nfs_root_path>"
bootargs‐ip
/env/config‐expansions

global.linux.bootargs.dyn.root="<rootfs_loc_dyn.root>"

Pr
el

im
in

ar
y

Application Note

16/40 © PHYTEC Messtechnik GmbH 2016

Please note that the text in <> such as <kernel_loc_bootm.image>, <rootfs_loc_dyn.root>,
and <nfs_root_path> are intended to be replaced with user specific values as described in
the following.

• <kernel_loc_bootm.image> specifies the location of the Linux kernel image and can be:
/dev/nand0.kernel.bb ‐ To boot the Linux kernel from NAND
/mnt/tftp/zImage ‐ To boot the Linux kernel via TFTP
/mnt/mmc/zImage ‐ To boot the Linux kernel from SD/MMC card

• <dts_loc_bootm.oftree> specifies the location of the device tree binary and can be:
/dev/nand0.oftree.bb ‐ To boot the device tree binary from NAND
/mnt/tftp/oftree ‐ To boot the device tree binary via TFTP
/mnt/mmc/oftree ‐ To boot the device tree binary from SD/MMC card

• <rootfs_loc_dyn.root> specifies the location of the root filesystem and can be:
root=ubi0:root ubi.mtd=root rootfstype=ubifs ‐ To mount the root

filesystem from NAND
root=/dev/nfs nfsroot=$nfsroot,vers=3,udp rw consoleblank=0

‐ To mount the root filesystem via NFS
root=/dev/mmcblk0p2 rootwait ‐ To mount the root filesystem from

SD/MMC card

• <nfs_root_path> is only required if mounting the root filesystem from NFS is desired.
Replace with the following:
nfsroot="/home/${global.user}/nfsroot/${global.hostname}"

 After completing the modifications exit the editor using CTRL+D and save the

environment:
bootloader$ saveenv

 To run your custom boot entry from the barebox shell enter:
bootloader$ boot custom

If you want to configure the bootloader for booting always from "custom", you need to
create the /env/nv/boot.default file. Here you can just insert "custom" and save it.
Otherwise the boot source and boot order is defined in /env/init/bootsource. Pr

el
im

in
ar

y

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 17/40

6 Updating the Software

In this chapter we explain how to use the barebox bootloader to update the images in the
NAND Flash.

6.1 Updating from Network

i.MX 6UL boards that have an Ethernet connector can be updated over network. Be sure to
set up the development host correctly. The IP needs to be set to 192.168.3.10, the
netmask to 255.255.255.0, and a TFTP server needs to be available.

 Boot the system using any boot device available.

 Press any key to stop autoboot, then type:
bootloader$ ifup eth0
bootloader$ devinfo eth0

The Ethernet interfaces should be configured like this:

ipaddr=192.168.3.11
netmask=255.255.255.0
gateway=192.168.3.10
serverip=192.168.3.10

If a DHCP server is available, it is also possible to set:
ip=dhcp

If you need to change something:

 Type:
bootloader$ edit /env/network/eth0

 Edit the settings, save them by leaving the editor with CTRL+D and type:
bootloader$ saveenv

 Reboot the board.

6.1.1 Updating NAND Flash from Network

To update the bootloader you may use the barebox_update command. This provides a
handler which automatically erases and flashes two copies of the barebox image into the
NAND Flash. This makes the system more robust against ECC issues. If one block is
corrupted the ROM loader does use the next block.This handler also creates an FCB table in
the NAND. The FCB table is needed from the ROM loader to boot from NAND.

 Type:
bootloader$ barebox_update ‐t nand /mnt/tftp/barebox.bin

Pr
el

im
in

ar
y

Application Note

18/40 © PHYTEC Messtechnik GmbH 2016

On startup the TFTP server is automatically mounted to /mnt/tftp. So copying an image
from TFTP to flash can be done in one step. Do not get confused when doing an ls on the
/mnt/tftp folder. The TFTP protocol does not support anything like ls so the folder will
appear to be empty.

We recommend to also erase the environment of the old barebox. Otherwise the new
barebox would use the old environment.

 First erase the old environment with:
bootloader$ erase /dev/nand0.barebox‐environment.bb

After erasing the environment, you have to reset your board. Otherwise the barebox still
uses the old environment.

 To reset your board in order to get the new barebox running type:
bootloader$ reset

 Now create UBI volumes for Linux kernel, oftree and root filesystem in NAND:
bootloader$ ubiformat /dev/nand0.root
bootloader$ ubiattach /dev/nand0.root
bootloader$ ubimkvol ‐t static /dev/nand0.root.ubi kernel 8M
bootloader$ ubimkvol ‐t static /dev/nand0.root.ubi oftree 1M
bootloader$ ubimkvol ‐t dynamic /dev/nand0.root.ubi root 0

 Get the Linux kernel and oftree from your TFTP server and store it also into the NAND

Flash with:
bootloader$ ubiupdatevol /dev/nand0.root.ubi.kernel /mnt/tftp/zImage
bootloader$ ubiupdatevol /dev/nand0.root.ubi.oftree /mnt/tftp/oftree

 For flashing Linux’s root filesystem to NAND, please use:
bootloader$ cp –v /mnt/tftp/root.ubifs /dev/nand0.root.ubi.root

6.2 Updating from SD Card

To update an i.MX 6UL board from SD card the SD card used for updating must be mounted
after the board is powered and the boot sequence is stopped on the bootloader prompt. If
the board is booted from SD card the card is already mounted automatically under
/mnt/mmc/.

The kernel and device tree are already in the first partition of the SD card to allow booting
from the SD card. In order to use the SD card also for updating the barebox in the NAND, or
NOR Flash, you have to copy the barebox.bin to the SD card on your host PC, too.

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

• The actual bootloader on the SD card is not in a partition. It is located
before the first partition after the partition table.

• You cannot update the root filesystem, because the first partition is too
small for it.

6.2.1 Updating NAND Flash from SD Card

To update the images on the NAND Flash from SD card basically the same commands as
updating from TFTP are used with just the path parameters adapted.

 Type:
bootloader$ barebox_update ‐t nand /mnt/mmc/barebox.bin

bootloader$ erase /dev/nand0.barebox‐environment.bb
bootloader$ reset

bootloader$ ubiformat /dev/nand0.root
bootloader$ ubiattach /dev/nand0.root

bootloader$ ubimkvol ‐t static /dev/nand0.root.ubi kernel 8M
bootloader$ ubimkvol ‐t static /dev/nand0.root.ubi oftree 1M
bootloader$ ubimkvol ‐t dynamic /dev/nand0.root.ubi root 0

bootloader$ ubiupdatevol /dev/nand0.root.ubi.kernel /mnt/mmc/zImage
bootloader$ ubiupdatevol /dev/nand0.root.ubi.oftree /mnt/mmc/oftree

 Change the boot configuration of your board to NAND boot if necessary, and reset your
board.

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 19/40

Pr
el

im
in

ar
y

Application Note

20/40 © PHYTEC Messtechnik GmbH 2016

7 Device Tree (DT)

7.1 Introduction

The following text describes briefly the Device Tree and can be found in the Linux kernel
(linux/Documentation/devicetree/usage-model.txt).

"The "Open Firmware Device Tree", or simply Device Tree (DT), is a data structure and
language for describing hardware. More specifically, it is a description of hardware that is
readable by an operating system so that the operating system doesn't need to hard code
details of the machine.
Structurally, the DT is a tree, or acyclic graph with named nodes, and nodes may have an
arbitrary number of named properties encapsulating arbitrary data. A mechanism also
exists to create arbitrary links from one node to another outside of the natural tree
structure.
Conceptually, a common set of usage conventions, called 'bindings', is defined for how
data should appear in the tree to describe typical hardware characteristics including data
busses, interrupt lines, GPIO connections, and peripheral devices."

The kernel is a really good source for a DT introduction. An overview of the device tree data
format can be found on the device tree usage page at devicetree.org:
http://devicetree.org/Device_Tree_Usage

7.2 Phytec phyBOARD-Segin i.MX 6UL BSP Device Tree Concept

This BSP is in an alpha state. The DT concept is under development.

Pr
el

im
in

ar
y

http://devicetree.org/Device_Tree_Usage

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 21/40

7.2.1 Switching Expansion Boards and Displays

Disconnect all power before connecting an expansion board. After you plugged in the
board, the software support can be activated in the bootloader without recompiling and
flashing the images.

Here is a simple example on how to enable the imx6ul-phytec-segin-peb-av-02 (Display
Expansion Board) on the phyBOARD-Segin using the barebox bootloader.

The configuration for any expansion board currently selected can be found in env/config-
expansions. E.g.:
#!/bin/sh
. /env/expansions/imx6ul‐phytec‐segin‐peb‐av‐02

To enable an expansion board the file config-expansions in the barebox environment must
be edited.

 To enable imx6ul-phytec-segin-peb-av-02, modify the env/config-expansions file and add,

or uncomment the text according to the expansion board used. E.g. for the PEB-AV-02
on the phyBOARD-Segin:
#!/bin/sh
. /env/expansions/imx6ul‐phytec‐segin‐peb‐av‐02

config-expansions is called within each bootsource script (/env/boot/*) and will be
executed before every boot process. This will cause the barebox to modify the DT used
before the boot process. Information on which DT nodes are necessary for the expansion
board can be found in the expansion configuration files.

imx6ul-phytec-segin-peb-av-02:

of_fixup_status /soc/aips‐bus@02100000/lcdif@021c8000/
of_fixup_status /soc/aips‐bus@02100000/lcdif@021c8000/display@di0
of_fixup_status /backlight
of_fixup_status /soc/aips‐bus@02100000/i2c@021a0000/edt‐ft5x06@38
of_fixup_status /soc/aips‐bus@02000000/pwm@02088000/

of_fixup_status is a barebox command and will enable a given DT node. Pr

el
im

in
ar

y

Application Note

22/40 © PHYTEC Messtechnik GmbH 2016

7.2.2 Handle the Different Displays

If you have chosen a display as expansion you have to select the appropriate display
timings in the device tree.

 Append the following lines to the end of config-expansions:
imx6ul‐phytec‐lcd: 7" display
#of_display_timings ‐S /soc/aips‐

bus@02100000/lcdif@021c8000/display@di0/display‐timings/ETM0700G0EDH6

imx6ul‐phytec‐lcd: 5.7" display
#of_display_timings ‐S /soc/aips‐

bus@02100000/lcdif@021c8000/display@di0/display‐timings/ETMV570G2DHU

imx6ul‐phytec‐lcd: 4.3" display
#of_display_timings ‐S /soc/aips‐

bus@02100000/lcdif@021c8000/display@di0/display‐timings/ETM0430G0DH6

imx6ul‐phytec‐lcd: 3.5" display
#of_display_timings ‐S /soc/aips‐

bus@02100000/lcdif@021c8000/display@di0/display‐timings/ETM0350G0DH6

 Uncomment the of_display_timings -S ... command for your screen size and save the file
and environment.

Beside the display timings, you have to choose the right touchscreen type. Capacitive
touchscreens are the standard touchscreens used with our boards. Thus, if you want to use
a resistive touchscreen, you have to choose a modified board file in the
env/config-expansions. The board files for resistive touchscreens all have the suffix -res.

Example: If you have the imx6ul-phytec-segin-peb-av-02-res board, change the
env/config-expansions from:
#!/bin/sh
. /env/expansions/imx6ul‐phytec‐segin‐peb‐av‐02
to:
#!/bin/sh
#. /env/expansions/imx6ul‐phytec‐segin‐peb‐av‐02
. /env/expansions/imx6ul‐phytec‐segin‐peb‐av‐02‐res Pr

el
im

in
ar

y

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 23/40

8 Accessing Peripherals

The following sections provide an overview of the supported hardware components and
their corresponding operating system drivers. Further changes can be ported upon
customer request.

To find out which boards and modules are supported by the release of Phytec’s i.MX 6UL
unified BSP described herein, visit our web page at
http://www.phytec.de/produkte/software/yocto/phytec-unified-yocto-bsp-releases/ and
click the corresponding BSP release. Now you can find all hardware supported in the
columns "Hardware Article Number" and the correct machine name in the corresponding
cell under "Machine Name".

To achieve maximum software re-use, the Linux kernel offers a sophisticated
infrastructure, layering software components into board specific parts. The BSP tries to
modularize the kit features as far as possible, which means that when a customized
baseboard, or even a customer specific module is developed, most of the software support
can be re-used without error-prone copy-and-paste. The kernel code corresponding to the
boards can be found in device trees (DT) under linux/arch/arm/boot/dts/*.dts*.

In fact, software re-use is one of the most important features of the Linux kernel and
especially of the ARM implementation, which always had to fight with an insane number of
possibilities of the System-on-Chip CPUs.

The whole board specific hardware is described in DTs and is not part of the kernel image
itself. The hardware description is in its own separate binary, called device tree blob (DTB).

Please read also section 7 "Device Tree (DT)" to get an understanding of our unified
i.MX 6UL BSP device tree model.

The following sections provide an overview of the supported hardware components and
their operating system drivers on the i.MX 6UL platform. Pr

el
im

in
ar

y

http://www.phytec.de/produkte/software/yocto/phytec-unified-yocto-bsp-releases/

Application Note

24/40 © PHYTEC Messtechnik GmbH 2016

8.1 i.MX 6UL Pin Muxing

The i.MX 6UL SoC contains many peripheral interfaces. In order to reduce package size and
lower overall system cost while maintaining maximum functionality, many of the i.MX 6UL
terminals can multiplex up to eight signal functions. Although there are many
combinations of pin multiplexing that are possible, only a certain number of sets, called IO
sets, are valid due to timing limitations. These valid IO sets were carefully chosen to
provide many possible application scenarios for the user.

Please refer to the NXP i.MX 6UL Reference Manuals for more information about the
specific pins and the muxing capabilities:
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-
applications-processors/i.mx-6-processors/i.mx6qp/i.mx-6ultralite-processor-low-power-
secure-arm-cortex-a7-core:i.MX6UL?fpsp=1&tab=Documentation_Tab

The IO set configuration, also called muxing, is done in the Device Tree. The driver
pinctrl-single reads the DT's node "fsl,pins" and does the appropriate pin muxing.

The following is an example of the pin muxing of the UART1 device in
imx6ul-phytec-phycore-som.dtsi:
pinctrl_uart1: uart1grp {
 fsl,pins = <
 MX6UL_PAD_UART1_TX_DATA__UART1_DCE_TX 0x1b0b1
 MX6QUL_PAD_UART1_RX_DATA__UART1_DCE_RX 0x1b0b1
 >;
};

The first part of the string MX6UL_PAD_UART1_TX_DATA__UART1_DCE_TX names the pad
(e.g. PAD_UART1_TX_DATA). The second part of the string (here UART1_DCE_TX) is the
desired muxing option for this pad.

The pad setting value (hex value on the right) is explained in:
linux/Documentation/devicetree/bindings/pinctrl/fsl,imx6ul-pinctrl.txt

In this example the pad setting value 0x1b0b1 means the pin is configured with:
PAD_CTL_HYS, PAD_CTL_SRE_SLOW, PAD_CTL_DSE_40ohm, PAD_CTL_SPEED_MED,
PAD_CTL_PUS_100K_UP, PAD_CTL_PUE and PAD_CTL_PKE.

This example is defined in:
linux/arch/arm/boot/dts/imx6ul-pinfunc.h

Pr
el

im
in

ar
y

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-applications-processors/i.mx-6-processors/i.mx6qp/i.mx-6ultralite-processor-low-power-secure-arm-cortex-a7-core:i.MX6UL?fpsp=1&tab=Documentation_Tab
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-applications-processors/i.mx-6-processors/i.mx6qp/i.mx-6ultralite-processor-low-power-secure-arm-cortex-a7-core:i.MX6UL?fpsp=1&tab=Documentation_Tab
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/i.mx-applications-processors/i.mx-6-processors/i.mx6qp/i.mx-6ultralite-processor-low-power-secure-arm-cortex-a7-core:i.MX6UL?fpsp=1&tab=Documentation_Tab

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 25/40

8.2 Serial TTYs

The i.MX 6UL SoC provides up to 8 so called UART units. Phytec boards support different
numbers of these UART units.

The phyBOARD-Segin uses UART0 (ttymxc0) as standard console output. It is configured as
115200 8N1 (115200 baud, 8 data bits, no parity bit, 1 stop bit). The other UARTs will
come up with default settings, which is normally 9600 baud.

 From the command line prompt of Linux user space you can easily check the availability

of other UART interfaces with:
target$ echo "test" > /dev/ttymxc4
Be sure that the baud rate is set correctly on host and target side.

In order to get the currently configured baud rate, you can use the command stty on the
target. The following example shows how to copy all serial settings from ttymxc0 (the
standard console of the phyBOARD-Segin) to ttymxc4.

 First get the current parameters with:

target$ stty ‐F /dev/ttymxc0 ‐g

5500:5:1cb2:a3b:3:1c:7f:15:4:0:1:0:11:13:1a:0:12:f:17:16:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0

 Now use the output from the stty command above as argument for the next command:

target$ stty ‐F /dev/ttymxc4
5500:5:1cb2:a3b:3:1c:7f:15:4:0:1:0:11:13:1a:0:12:f:17:16:0:0:0:0:0:0:0
:0:0:0:0:0:0:0:0:0
or
target$ stty ‐F /dev/ttymxc4 $(stty ‐g < /dev/ttymxc0)

Pr
el

im
in

ar
y

Application Note

26/40 © PHYTEC Messtechnik GmbH 2016

8.3 Network

The phyBOARD-Segin features two 10/100 Mbit Ethernet interfaces. The interface offers a
standard Linux network port which can be programmed using the BSD socket interface.

The whole network configuration is handled by the systemd-networkd daemon. The relevant
configuration files can be found on the target in /lib/systemd/network/ and also in the BSP
in meta-yogurt/recipes-core/systemd/systemd/.

IP addresses can be configured within *.network files. The default IP address and netmask
for eth0 and eth1 are:

eth0: 192.168.3.11/24
eth1: 192.168.4.11/24

8.4 CAN Bus

The phyBOARD-Segin i.MX 6UL provides a CAN interface, which is supported by drivers
using the proposed Linux standard CAN framework SocketCAN. Using this framework, CAN
interfaces can be programmed with the BSD socket API.

The Controller Area Network (CAN) bus offers a low-bandwidth, prioritized message
fieldbus for serial communication between microcontrollers. Unfortunately, CAN was not
designed with the ISO/OSI layer model in mind, so most CAN APIs available throughout the
industry do not support a clean separation between the different logical protocol layers, as
for example known from Ethernet.

The SocketCAN framework for Linux extends the BSD socket API concept towards CAN bus.
Because of that, using this framework, the CAN interfaces can be programmed with the BSD
socket API and behaves like an ordinary Linux network device, with some additional
features special to CAN.

 E.g., use:
target$ ip link
to see if the interface is up or down, but the given MAC and IP addresses are arbitrary
and obsolete.

 To get the information on can0 (which represents i.MX 6UL’s CAN module FLEXCAN1)

such as bit rate and error counters type:
target$ ip ‐d ‐s link show can0

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 27/40

The information for can0 will look like the following:

2: can0: <NOARP,ECHO> mtu 16 qdisc pfifo_fast state DOWN mode DEFAULT group default qlen 10
 link/can promiscuity 0
 can state STOPPED (berr-counter tx 0 rx 0) restart-ms 0
 bitrate 10000 sample-point 0.866
 tq 6666 prop-seg 6 phase-seg1 6 phase-seg2 2 sjw 1
 flexcan: tseg1 4..16 tseg2 2..8 sjw 1..4 brp 1..256 brp-inc 1
 clock 30000000
 re-started bus-errors arbit-lost error-warn error-pass bus-off
 0 0 0 0 0 0
 RX: bytes packets errors dropped overrun mcast
 0 0 0 0 0 0
 TX: bytes packets errors dropped carrier collsns
 0 0 0 0 0 0

The output contains a standard set of parameters also shown for Ethernet interfaces, so
not all of these are necessarily relevant for CAN (for example the MAC address).

The following output parameters contain useful information:

Field Description

can0 Interface Name

NOARP CAN cannot use ARP protocol

MTU Maximum Transfer Unit

RX packets Number of Received Packets

TX packets Number of Transmitted Packets

RX bytes Number of Received Bytes

TX bytes Number of Transmitted Bytes

errors... Bus Error Statistics

The CAN configuration is done in the systemd configuration file
/lib/systemd/system/can0.service.

For a persistent change of e.g. the default bitrates change the configuration in the BSP
under meta-yogurt/recipes-core/systemd/systemd/can0.service in the root filesystem
instead and rebuild the root filesystem.

Pr
el

im
in

ar
y

Application Note

[Unit]
Description=can0 interface setup

[Service]
Type=simple
RemainAfterExit=yes
ExecStart=/sbin/ip link set can0 up type can bitrate 500000
ExecStop=/sbin/ip link set can0 down

[Install]
WantedBy=basic.target

The can0.service is started after boot by default. You can start and stop it with:
target$ systemctl stop can0.service
target$ systemctl start can0.service

You can send messages with cansend, or receive messages with candump:
target$ cansend can0 123#45.67
target$ candump can0

To generate random CAN traffic for testing purpose use cangen.
target$ cangen

See cansend ‐‐help and candump ‐‐help messages for further information on options
and usage.

8.5 MMC/SD Card

The phyBOARD-Segin i.MX 6UL supports a slot for Secure Digital Cards and Multi Media
Cards to be used as general purpose block devices. These devices can be used in the same
way as any other block device.

This kind of devices are hot pluggable, nevertheless you must pay
attention not to unplug the device while it is still mounted. This may
result in data loss.

After inserting an MMC/SD card, the kernel will generate new device nodes in /dev. The full
device can be reached via its /dev/mmcblk0 device node, MMC/SD card partitions will show
up in the following way:
/dev/mmcblk0p<Y>

<Y> counts as the partition number starting from 1 to the max. count of partitions on this
device.

28/40 © PHYTEC Messtechnik GmbH 2016

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

The partitions can be formatted with any kind of file system and also handled in a standard
manner, e.g. the mount and umount command work as expected.

• These partition device nodes will only be available if the card contains
a valid partition table (”hard disk” like handling). If it does not contain
one, the whole device can be used as a file system (”floppy” like
handling). In this case /dev/mmcblk0 must be used for formatting and
mounting.

• The cards are always mounted as being writable.

8.6 NAND Flash

The phyCORE-i.MX 6UL on the phyBOARD-Segin is equipped with raw NAND memory, which
is used as media for storing Linux, DTB and root filesystem, including applications and
their data files.

The NAND Flash is connected to the General Purpose Media Interface (GPMI) of the
i.MX 6UL. The NAND Flash type and size is automatically being detected via the Open NAND
Flash Interface (ONFI) during boot.

This type of media is managed by the UBI file system. This file system uses compression
and decompression on the fly to increase the quantity of data stored.

From Linux user space the NAND Flash partitions start with /dev/mtdblock0. Only the
/dev/mtdblock4 on the Phytec modules has a file system, meaning that the other partitions
cannot be mounted to the root filesystem. The only way to access them is by flashing a
prepared flash image into the corresponding /dev/mtd device node.

The partitions of a NAND Flash are defined in all DTs, but the barebox bootloader overwrites
only the partitions of the kernel device tree. Thus, changing the partitions has to be done
either in the barebox DT, or in the barebox environment. How to modify the partitions
during runtime in the barebox environment is described in section 9.1 "Changing MTD
Partitions".

Adding new partitions can be done by creating a new partition node in the corresponding
board device tree. The property label defines the name of the partition and the reg value
the offset and size of a partition. Do not forget to update all following partitions when
adding a partition, or changing a partition's size.

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 29/40

Pr
el

im
in

ar
y

Application Note

8.7 LEDs

In case that LEDs are being connected to GPIOs, you have the possibility to access them by
a special LED driver interface instead of the general GPIO interface. You will then access
them using /sys/class/leds/ instead of /sys/class/gpio/. The maximum brightness of the
LEDs can be read from the max_brightness file. The brightness file will set the brightness of
the LED (taking a value 0 to max_brightness). Most LEDs do not have hardware brightness
support and thus will just be turned on by all non-zero brightness settings.

Here is a simple example:
 To get all LEDs available, type:
target$ ls /sys/class/leds

mmc0:: phycore:green user_led_red user_led_yellow

 To toogle the LEDs use

target$ echo 255 > /sys/class/leds/user_led_red/brightness
to turn it ON, and
target$ echo 0 > /sys/class/leds/user_led_red/brightness
to turn it OFF.

user_led-red and user_led_yellow represent the LEDs on the Evaluation
Board (PEB-EVAL-01).

8.8 I2C Bus

The i.MX 6UL contains four multimaster fast-mode I2C modules called I2C1, I2C2, I2C3, and
I2C4. On the phyBOARD-Segin only I2C1 is supported and connects to different I2C devices
on the phyCORE i.MX 6UL as well as on the phyBOARD-Segin. This chapter will describe the
basic device usage of some of the I2C devices.

8.8.1 EEPROM

It is possible to read and write to the device directly in
target$ /sys/class/i2c‐dev/i2c‐0/device/0‐0052/eeprom.

 E.g. to read and print the first 1024 bytes of the EEPROM as hex number execute:
target$ dd if=/sys/class/i2c‐dev/i2c‐0/device/0‐0052/eeprom bs=1

count=1024 | od ‐x

 E.g. to fill the whole EEPROM with zeros use:
target$ dd if=/dev/zero of=/sys/class/i2c‐dev/i2c‐0/device/0‐

0052/eeprom bs=4096 count=1

30/40 © PHYTEC Messtechnik GmbH 2016

This operation takes some time, because the EEPROM is relatively slow.

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

8.8.2 RTC

RTCs can be accessed via /dev/rtc*. Because Phytec boards have often more than one RTC,
there might be more than one RTC device file.

 To find out the name of the RTC device you can read its sysfs entry with:
target$ cat /sys/class/rtc/rtc*/name

You will get for example:
rv4162
20cc000.snvs:snvs‐r

This will list all RTCs including the non-I2C RTCs. Linux assigns RTC devices
IDs based on the device tree /aliases entries if present.

As the time is set according to the value of rtc0 during system boot rtc0 should be always
the RTC that is being backed up.

Date and time can be manipulated with the hwclock tool, using the -w (systohc) and -s
(hctosys) options.

To set the date first use date and then run hwclock -w -u to store the new date into the RTC.
For more information about this tool refer to the manpage of hwclock.

8.8.3 Capacitive Touchscreen

The capacitive touchscreen is a part of the display module.

 For a simple test of the basic input handling of the touchscreen use evtest after selecting

an input device:
target$ evtest
The raw touch input events will be displayed.

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 31/40

Pr
el

im
in

ar
y

Application Note

32/40 © PHYTEC Messtechnik GmbH 2016

8.9 USB Host Controller

The USB controller of the i.MX 6UL SoC provides a low-cost connectivity solution for
numerous consumer portable devices by providing a mechanism for data transfer between
USB devices with a line/bus speed up to 480 Mbps. The USB subsystem has two
independent USB controller cores.

The unified BSP includes support for mass storage devices and keyboards. Other USB
related device drivers must be enabled in the kernel configuration on demand.

Due to udev, all mass storage devices connected get unique IDs and can be found in
/dev/disks/by-id. These IDs can be used in /etc/fstab to mount the different USB memory
devices in different ways.

8.10 USB OTG

The phyBOARD-Segin provides one USB OTG interface. USB OTG ports automatically act as
USB device, or USB host. The mode depends on the USB hardware attached to the USB OTG
port. If, for example, an USB mass storage device is attached to the USB OTG port, the
device will show up as /dev/sda.

8.10.1 Using the Board as USB Device

In order to connect the board as USB device to an USB host port (for example a PC), you
need to configure the appropriate USB gadget. With USB configfs you can define the
parameters and functions of the USB gadget. The BSP includes USB configfs support as
kernel module.

 To load the module execute:
target$ modprobe libcomposite

Example:

 To define parameters such as the USB vendor and product IDs and to set the information
strings for the english (0x409) language execute:
target$ cd /sys/kernel/config/usb_gadget/
target$ mkdir g1
target$ cd g1/
target$ echo "0x1d6b" > idVendor
target$ echo "0x0104" > idProduct
target$ mkdir strings/0x409
target$ echo "0123456789" > strings/0x409/serialnumber
target$ echo "Foo Inc." > strings/0x409/manufacturer
target$ echo "Bar Gadget" > strings/0x409/product

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 33/40

 Next create a file for the mass storage gadget with:
target$ dd if=/dev/zero of=/tmp/file.img bs=1M count=64

 Now create the functions you want to use:
target$ cd /sys/kernel/config/usb_gadget/g1
target$ mkdir functions/acm.GS0
target$ mkdir functions/ecm.usb0
target$ mkdir functions/mass_storage.0
target$ echo /tmp/file.img > functions/mass_storage.0/lun.0/file
acm: Serial gadget, creates a serial interface like /dev/ttyGS0
ecm: Ethernet gadget, creates an Ethernet interface, e.g. usb0
mass_storage: The host can partition, format and mount the gadget mass storage the

same way as any other USB mass storage

 Bind the newly defined functions to a configuration with:
target$ cd /sys/kernel/config/usb_gadget/g1
target$ mkdir configs/c.1
target$ mkdir configs/c.1/strings/0x409
target$ echo "CDC ACM+ECM+MS" >
configs/c.1/strings/0x409/configuration
target$ ln ‐s functions/acm.GS0 configs/c.1/
target$ ln ‐s functions/ecm.usb0 configs/c.1/
target$ ln ‐s functions/mass_storage.0 configs/c.1/

 To start the USB gadget first get the correct name of the driver with:
target$ cd /sys/kernel/config/usb_gadget/g1
target$ ls /sys/class/udc/
which will result in:
ci_hdrc.0

 Finally start the USB gadget:
target$ echo "ci_hdrc.0" >UDC

 To stop the USB gadget and unbind the functions used execute:
target$ echo "" > /sys/kernel/config/usb_gadget/g1/UDC Pr

el
im

in
ar

y

Application Note

34/40 © PHYTEC Messtechnik GmbH 2016

8.11 Audio

On Phytec boards different audio chips are used. This section is written for the
phyBOARD-Segin i.MX 6 (PBA-CD-10) with the TI TLV320AIC3007 audio codec, but it should
be applicable for other boards and audio chips as well.

Audio support is done via the I2S interface and controlled via I2C.

 To check if your soundcard driver is loaded correctly and what the device is called type:
target$ aplay ‐L

 Use scp to copy a wav file to the board and play it through the sound interface with:
target$ aplay ‐vv file.wav

Not all wave formats are supported by the sound interface. Use Audacity on your host to
convert any file into 44100:S16_LE wave format which should be supported on all
platforms.

 Run speaker-test to identify channel numbers:
target$ speaker‐test ‐c 2 ‐t wav

 An external audio source can be connected to the input, in order to record a sound file

which can then be played back:
target$ arecord ‐c 2 ‐r 441000 ‐f S16_LE test.wav
target$ aplay test.wav

 To inspect your soundcards capabilities call:
target$ alsamixer

You should see a lot of options as the audio-ICs have many features you can play with. It
might be better to open alsamixer via ssh instead of the serial console, as the console
graphical effects could be better. You have either mono or stereo gain controls for all mix
points. "MM" means the feature is muted, which can be toggled by hitting m.

For more advanced audio usage, you need to have an audio server. This is required e.g. if
you want to playback from different applications at the same time, e.g. you a have a
notification app which makes a beep every now and then, plus you have a browser running
which should be able to play sounds embedded in websites. The notification app has no
possibility to open the sound device as long as the browser is running. The notifications
will be suppressed. The standard sound server of Linux is pulseaudio. It is not installed per
default at the moment, though.

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

8.11.1 Audio Sources and Sinks

Enabling and disabling input and output channels can be done with the alsamixer program.
F3 selects Screen Playback and F4 Screen Capture. With the Tabulator key you can switch
between these screens. To enable, or disable switchable controls press m (mute).

 Figure 3: Screenshot of alsamixer

With the keys cursor left and cursor right you can step through the different channels.
There are much more channels than fit onto one screen, so they will scroll if your cursor
reaches the right or left edge of it. In case you get trouble in the display during scrolling,
please use ssh instead of microcom.

alsamixer can be left by pressing the ESC key. The settings are saved automatically on
shutdown and restored on boot by the systemd service alsa-restore. If you want to save the
mixer settings manually you can execute alsactl store. The settings are saved in
/var/lib/alsa/asound.state.

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 35/40

Pr
el

im
in

ar
y

Application Note

8.11.2 Playback

To playback simple audio streams, you can use aplay. For example:
target$ aplay /usr/share/sounds/alsa/Front_Center.wav

The file formats .ogg, and .flac can be played back using ogg123. MP3 playback is currently
not supported per default, because of licensing issues. If you are going to deliver a product
including .mp3 files, please check the royalty fees.

8.11.3 Capture

arecord is a command line tool for capturing audio streams which uses Line In as default
input source.

To select a different audio source you can use alsamixer. For example, switch on Right PGA
Mixer Mic3R and Left PGA Mixer Mic3L in order to capture the audio from the microphone
input.

It is a known error that you need to choose Playback screen (F3) instead of
Capture screen (F4) for accessing these two controls.

The following example will capture the current stereo input source with a sample rate of
48000 Hz and will create an audio file in WAV format (signed 16 bit per channel, 32 bit per
sample):
target$ arecord ‐t wav ‐c 2 ‐r 48000 ‐f S16_LE test.wav

Capturing can be stopped again using CTRL-C.

8.12 Framebuffer

This driver gains access to a display connected to the carrier board via device node
/dev/fb0.

 To run a simple test of the framebuffer feature execute:
target$ fbtest

This will show various pictures on the display.

 Information about the framebuffer's resolution can be obtained with:
target$ fbset

36/40 © PHYTEC Messtechnik GmbH 2016

Pr
el

im
in

ar
y

 phyBOARD-Segin i.MX 6UL Alpha Kit

which will return:
 mode "800x480-60"
 # D: 33.265 MHz, H: 31.501 kHz, V: 60.001 Hz
 geometry 800 480 800 480 32
 timings 30062 88 40 33 10 128 2
 accel false
 rgba 8/16,8/8,8/0,0/0
 endmode

fbset cannot be used to change display resolution or color depth.
Depending on the framebuffer device different kernel commands are
mostly needed to do this. Some documentation can be found in the kernel
documentation at
https://www.kernel.org/doc/Documentation/fb/modedb.txt.

Please also refer to the manual of your display driver for more details.

Another useful command allows to query the color depth.

 To query the color depth of the framebuffer emulation type:
target$ cat /sys/class/graphics/fb0/bits_per_pixel

The result can be, for example:
 32

8.12.1 Backlight Control

If a display is connected to the phyBOARD-Segin, you can control its backlight with the
Linux kernel sysfs interface. All available backlight devices in the system can be found in
the folder /sys/class/backlight. Reading the appropriate files, and writing to them allows
to control the backlight.

 To get, for example, the maximum brightness level (max_brightness) execute
target$ cat /sys/class/backlight/backlight/max_brightness
which will result in:

 7

Valid values for the brightness level are 0 to <max_brightness>.

 To obtain the current brightness level type:

target$ cat /sys/class/backlight/backlight/brightness
You will get for example:

2

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 37/40

Pr
el

im
in

ar
y

https://www.kernel.org/doc/Documentation/fb/modedb.txt

Application Note

38/40 © PHYTEC Messtechnik GmbH 2016

 Write to the file brightness to change the brightness. E.g.,

target$ echo 0 > /sys/class/backlight/backlight/ brightness
turns the backlight off,

target$ echo > 6 /sys/class/backlight/backlight/ brightness
sets the brightness to the second highest brightness level.

For documentation of all files see
https://www.kernel.org/doc/Documentation/ABI/stable/sysfs-class-backlight.

8.12.2 Resistive Touchscreens

The phyBOARD-Segin supports connecting a resistive touchscreen which requires tslib
support in general.

 Calibration of the touchscreen can be done by executing:
target$ ts_calibrate

 Testing the touchscreen can be done with:
target$ ts_test

Pr
el

im
in

ar
y

https://www.kernel.org/doc/Documentation/ABI/stable/sysfs-class-backlight

 phyBOARD-Segin i.MX 6UL Alpha Kit

© PHYTEC Messtechnik GmbH 2016 LAN-071e_0 39/40

9 Customizing the BSP

9.1 Changing MTD Partitions

For Memory Technology Devices (MTD) such as NAND Flash or SPI NOR Flash the partitions
are usually defined in the device trees, i.e. they are defined in the barebox and the kernel.
When changing the partition table all those parts need to be touched. Newer barebox
versions (v2015.07.0 and newer) have a mechanism to overwrite partitions at runtime.

The barebox holds an internal list with partitions which is initialized with the partition
table out of the barebox device tree. This list is used later on to fix up the device tree of the
kernel and can be overwritten in the barebox shell, or with a script before booting the
kernel.

 To print the partitions just type:
bootloader$ echo $<mtddevice>.partitions

Example:
bootloader$ echo $nand0.partitions
can, for example, result in:

4M(barebox),1M(barebox-environment),1M(oftree),8M(kernel),1010M(root)

 To overwrite the partitions just change the partitions variable:
bootloader$ m25p0.partitions=1M(barebox),128k(barebox‐

environment),128k(oftree),5104k(kernel)

Adding and deleting partitions by overwriting the partitions variable is possible. But do
not touch the barebox and bareboxenv partitions. Those should not be changed at runtime.

Pr
el

im
in

ar
y

Application Note

40/40 © PHYTEC Messtechnik GmbH 2016

Please contact our technical support, if you need additional information, or if you have any
questions.

Europe (except France): France:
 +49 6131 9221-31 +33 2 43 29 22 33
 support@phytec.de support@phytec.fr

North America: India:

 +1 206 780-9047, or
+1 800 278-9913

 +91-80-4086 7047

 support@phytec.com support@phytec.in

China:

 +86-755-6180-2110
 support@phytec.cn

Pr
el

im
in

ar
y

mailto:support@phytec.de
mailto:support@phytec.fr
mailto:support@phytec.com
mailto:support@phytec.in
mailto:support@phytec.cn

	1
Introduction
	2 Requirements
	3 Getting Started with the included SD Card
	3.1 Connector Interfaces
	3.2 Booting from the SD Card

	4 Building the BSP
	4.1 Get the BSP
	4.2 Basic Set-Up
	4.3 Selecting a Software Platform
	4.4 Starting the Build Process
	4.5 BSP Images

	5 Booting the System
	5.1 Booting from SD Card
	5.1.1 Using a single, prebuild SD Card Image
	5.1.2 Using four individual Images (barebox-, kernel- and device tree image, and root filesystem)
	5.1.3 Booting from USB OTG (Serial Downloader)

	5.2 Booting the Kernel from Network
	5.2.1 Development Host Preparations
	5.2.2 Preparations on the Embedded Board
	5.2.3 Booting the Embedded Board

	5.3 Custom Boot Setup

	6 Updating the Software
	6.1 Updating from Network
	6.1.1 Updating NAND Flash from Network

	6.2 Updating from SD Card
	6.2.1 Updating NAND Flash from SD Card

	7 Device Tree (DT)
	7.1 Introduction
	7.2 Phytec phyBOARDSegin i.MX 6UL BSP Device Tree Concept
	7.2.1 Switching Expansion Boards and Displays
	7.2.2 Handle the Different Displays

	8 Accessing Peripherals
	8.1 i.MX 6UL Pin Muxing
	8.2 Serial TTYs
	8.3 Network
	8.4 CAN Bus
	8.5 MMC/SD Card
	8.6 NAND Flash
	8.7 LEDs
	8.8 I2C Bus
	8.8.1 EEPROM
	8.8.2 RTC
	8.8.3 Capacitive Touchscreen

	8.9 USB Host Controller
	8.10 USB OTG
	8.10.1 Using the Board as USB Device

	8.11 Audio
	8.11.1 Audio Sources and Sinks
	8.11.2 Playback
	8.11.3 Capture

	8.12
Framebuffer
	8.12.1 Backlight Control
	8.12.2 Resistive Touchscreens

	9 Customizing the BSP
	9.1 Changing MTD Partitions

