

A product of a PHYTEC Technology Holding company

Yocto

AM335x BSP Manual

 Document No.: L-818e_3

 Release No.: AM335x PD16.2.x

 Yocto 2.1.2

 Edition: February 2017

Yocto AM335x BSP Manual

  PHYTEC Messtechnik GmbH 2017 L-818e_3

Copyrighted products are not explicitly indicated in this manual. The absence of the trademark (™, or ®)
and copyright (©) symbols does not imply that a product is not protected. Additionally, registered patents
and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is considered to be entirely reliable.
However, PHYTEC Messtechnik GmbH assumes no responsibility for any inaccuracies. PHYTEC Messtechnik
GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages
resulting from the use of this manual or its associated product. PHYTEC Messtechnik GmbH reserves the
right to alter the information contained herein without prior notification and accepts no responsibility for
any damages that might result.

Additionally, PHYTEC Messtechnik GmbH offers no guarantee nor accepts any liability for damages arising
from the improper usage or improper installation of the hardware or software. PHYTEC Messtechnik GmbH
further reserves the right to alter the layout and/or design of the hardware without prior notification and
accepts no liability for doing so.

 Copyright 2017 PHYTEC Messtechnik GmbH, D-55129 Mainz.
Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and
storage or processing in computer systems, in whole or in part - are reserved. No reproduction may occur
without the express written consent from PHYTEC Messtechnik GmbH.

 EUROPE NORTH AMERICA FRANCE

Address: PHYTEC Messtechnik GmbH
Robert-Koch-Str. 39
D-55129 Mainz
GERMANY

PHYTEC America LLC
203 Parfitt Way SW
Bainbridge Island, WA 98110
USA

PHYTEC France
17, place Saint-Etienne
F-72140 Sillé-le-Guillaume
FRANCE

Sales:
+49 6131 9221-32
sales@phytec.de

+1 800 278-9913
sales@phytec.com

+33 2 43 29 22 33
info@phytec.fr

Technical
Support:

+49 6131 9221-31
support@phytec.de

+1 206 780-9047
support@phytec.com

support@phytec.fr

Fax: +49 6131 9221-33 +1 206 780-9135 +33 2 43 29 22 34

Web Site:
http://www.phytec.de
http://www.phytec.eu

http://www.phytec.com http://www.phytec.fr

 INDIA CHINA

Address: PHYTEC Embedded Pvt. Ltd.
#438, 1st Floor, 18th Main, 6th Block,
Oppt. BMTC Bus Depot, Koramangala,
Bangalore-560095
INDIA

PHYTEC Information Technology (Shenzhen) Co. Ltd.
2106A, Block A, Tianxia Jinniu Square,
Taoyuan Road, Nanshan District,
518026 Shenzhen
CHINA

Sales:
+91-80-4086 7046/48
sales@phytec.in

+86-755-6180-2110
sales@phytec.cn

Technical
Support:

+91-80-4086 7047/50
support@phytec.in

support@phytec.cn

Fax:

Web Site: http://www.phytec.in http://www.phytec.cn

3rd Edition February 2017

mailto:sales@phytec.de
mailto:info@phytec.com
mailto:info@phytec.fr
mailto:support@phytec.de
mailto:support@phytec.com
mailto:support@phytec.fr
http://www.phytec.de/
http://www.phytec.eu/
http://www.phytec.com/
http://www.phytec.fr/
mailto:sales@phytec.in
mailto:info@phytec.cn
mailto:support@phytec.in
mailto:support@phytec.cn
http://www.phytec.in/
http://www.phytec.cn/

 Contents

 PHYTEC Messtechnik GmbH 2017 L-818e_3 i

List of Figures ... iii
Conventions, Abbreviations and Acronyms .. iv
1 Introduction to Yocto .. 1
2 Introduction to the BSP ... 1

2.1 Supported Hardware.. 1
3 Building the BSP ... 2

3.1 Get the BSP ... 2
3.2 Basic Set-Up .. 2
3.3 Finding the right Software Platform.. 3
3.4 Selecting a Software Platform.. 3
3.5 Starting the Build Process .. 3
3.6 BSP Images ... 4

4 Booting the System ... 5
4.1 Booting from NAND Flash ... 5
4.2 Booting from SD Card .. 5

4.2.1 Using a single, prebuild SD Card Image .. 5
4.2.2 Using a Script and the four individual Images

(MLO, barebox.bin, linuximage and oftree file) ... 7
4.3 Booting from UART.. 8
4.4 Booting from SPI NOR Flash .. 9
4.5 Booting a Bootloader from Network.. 9
4.6 Booting the Kernel from Network ..11

4.6.1 Development Host Preparations...11
4.6.2 Preparations on the Embedded Board ...11
4.6.3 Booting the Embedded Board..12

4.7 Custom Boot Setup...12
5 Updating the Software... 14

5.1 Updating from Network ...14
5.1.1 Updating NAND Flash from Network ..14
5.1.2 Updating SPI NOR Flash from Network...16

5.2 Updating from SD Card..17
5.2.1 Updating NAND Flash from SD Card...17
5.2.2 Updating SPI NOR Flash from SD Card..18

5.3 Updating from USB Flash Drive ...19
5.3.1 Updating NAND Flash from USB Flash Drive ..20
5.3.2 Updating SPI NOR Flash from USB Flash Drive ...21

5.4 Troubleshooting NAND Flash Update..22
5.4.1 Updating from BSP-Yocto-AM335x-PD15.x.x or

BSP-Yocto-phyCORE-AM335x-R2-PD16.1.x...22
5.4.2 Updating from a PTXdist BSP ...22

6 Device Tree (DT).. 23
6.1 Introduction ...23
6.2 Phytec AM335x BSP Device Tree Concept...23

6.2.1 Basic DT Structure...23
6.2.2 Expansion Boards and Displays..24
6.2.3 Switching Expansion Boards and Displays ..25

Yocto AM335x BSP Manual

ii  PHYTEC Messtechnik GmbH 2017 L-818e_3

6.2.4 Handle the Different Displays ... 26
6.2.5 Pre-Bootloader's DT Handling .. 26
6.2.6 Bootloader's DT Modifications .. 27

7 Accessing Peripherals .. 28
7.1 AM335x Pin Muxing ... 28
7.2 Serial TTYs ... 30

7.2.1 RS-485 .. 32
7.3 Network .. 33
7.4 CAN Bus .. 36
7.5 MMC/SD Card ... 39
7.6 NAND Flash .. 41
7.7 GPIOs ... 43

7.7.1 Keys .. 44
7.7.2 LEDs.. 45

7.8 SPI Master ... 47
7.9 I²C Bus.. 49

7.9.1 EEPROM ... 49
7.9.2 RTC ... 50
7.9.3 Capacitive Touchscreen ... 51
7.9.4 Temperature Sensor ... 52

7.10 USB Host Controller... 53
7.11 USB OTG.. 54

7.11.1 USB Device ... 54
7.12 Audio ... 56

7.12.1 Audio Sources and Sinks.. 57
7.12.2 Playback .. 58
7.12.3 Capture.. 58
7.12.4 Texas Instruments TLV320AIC3007 (phyBOARD-Wega) 58
7.12.5 Wolfson WM8974 (phyCORE-AM335x Carrier Board - PCM-953) 59

7.13 Framebuffer ... 60
7.13.1 Backlight Control ... 62
7.13.2 Resistive Touchscreens.. 63

7.14 Watchdog .. 63
7.14.1 Watchdog Support in the Barebox Bootloader.. 63
7.14.2 Watchdog Support in the Linux Kernel.. 64
7.14.3 Watchdog Support in systemd... 64

7.15 WLAN Modules.. 65
7.15.1 Supported Wi-Fi Modules and Software used.. 65
7.15.2 Enable Wi-Fi Expansion Boards ... 65
7.15.3 Calibration ... 66

7.16 Power Management ... 67
7.16.1 CPU Core Frequency Scaling ... 67
7.16.2 Power Saving Modes ... 69

7.16.2.1 Standby .. 69
7.16.2.2 Deep Sleep .. 69

8 Customizing the BSP.. 70
8.1 Changing MTD Partitions .. 70

9 Revision History.. 71

 Contents

 PHYTEC Messtechnik GmbH 2017 L-818e_3 iii

List of Figures
Figure 1: Basic DT Structure of Phytec AM335x Boards..24

Figure 2: DTS Structure of Expansion Boards ..24

Figure 3: Screenshot of alsamixer ..57

Yocto AM335x BSP Manual

Conventions, Abbreviations and Acronyms

This AM335x BSP Manual describes the Linux BSP accompanying our hardware products. It
is based on The Yocto Project, extended with hardware support for our products. We give a
brief introduction to Yocto in general and the specific changes and additions made by
Phytec.

Conventions
The conventions used in this manual are as follows:
 Text in blue italic indicates a hyperlink within, or external to the document. Click these

links to quickly jump to the applicable URL, part, chapter, table, or figure.
 Text in bold italic indicates an interaction by the user, which is defined on the screen.
 Text in Consolas indicates an input by the user, without a premade text or button to

click on.
 Text in italic indicates proper names of development tools and corresponding controls

(windows, tabs, commands, file paths, etc.) used within the development tool, no
interaction takes place.

 White Text on black background shows the result of any user interaction (command,
program execution, etc.)

This is a warning. It helps you to avoid annoying problems.

You can find useful supplementary information about the topic.

iv  PHYTEC Messtechnik GmbH 2017 L-818e_3

 Introduction

 PHYTEC Messtechnik GmbH 2017 L-818e_3 1

1 Introduction to Yocto

Please read the Yocto Reference Manual (L-813e_x) for a better understanding of Yocto and
this BSP.

2 Introduction to the BSP

2.1 Supported Hardware

For information which boards and modules are supported by the release of Phytec’s
AM335x unified BSP described herein, visit our web page at
http://www.phytec.de/produkte/software/yocto/phytec-unified-yocto-bsp-releases/.

Click the corresponding BSP release and look for the ordering number of your module in
the column "Hardware Article Number". Now you can find the correct machine name in the
corresponding cell under "Machine Name".

http://www.phytec.de/produkte/software/yocto/phytec-unified-yocto-bsp-releases/

Yocto AM335x BSP Manual

2  PHYTEC Messtechnik GmbH 2017 L-818e_3

3 Building the BSP

This section will guide you through the general build process of the unified AM335x BSP
using the phyLinux script. If you want to use our software without phyLinux and the Repo
tool managed environment instead, you can find all Git repositories on
https://git.phytec.de

Used barebox repository:
https://git.phytec.de/barebox

Our barebox version is based on the barebox mainline and adds only a few patches which
will be sent upstream in future. Used Linux kernel repository:
https://git.phytec.de/linux-ti

Our AM335x kernel is based on the kernel maintained by TI. TI has several thousand
patches on top of the mainline kernel. We added another 50 patches on top of it. TI's
kernel repository can be found at:
git://git.ti.com/ti-linux-kernel/ti-linux-kernel.git

To find out which tag is used for a specific board, have a look at your checked out BSP
source folder under:
meta-phytec/recipes-bsp/barebox/barebox_*.bb
meta-phytec/recipes-kernel/linux/linux-ti_*.bb

3.1 Get the BSP

 Create a fresh project directory, e.g.
host$ mkdir ~/yocto

 Download and run the phyLinux script
host$ cd ~/yocto
host$ wget ftp://ftp.phytec.de/pub/Software/Linux/Yocto/Tools/phyLinux
host$ chmod +x phyLinux
host$./phyLinux init

3.2 Basic Set-Up

There are a few important steps which have to be done, before the main build process.

 Setting up the host, see Yocto Reference Manual "Setting up the Host"
 Setting up the Git configuration, see Yocto Reference Manual "Git Configuration"

http://devwiki.phytec.de/mediawiki/index.php?title=Yocto/Yocto_Reference_Manual%23phyLinux_documentation
ftp://ftp.phytec.de/pub/Software/Linux/Yocto/Tools/phyLinux

 Building the BSP

 PHYTEC Messtechnik GmbH 2017 L-818e_3 3

3.3 Finding the right Software Platform

The AM335x BSP is a unified BSP, which means it supports a set of different Phytec carrier
boards (CB) with different Systems on Module (SOMs). Sometimes it is not easy to find the
right software for your Phytec board. So if you need to figure out the corresponding
machine name of your board, have a look at
http://www.phytec.de/produkte/software/yocto/phytec-unified-yocto-bsp-releases/ and
click on the corresponding BSP release, or refer to the files in the source folder of the BSP:
meta-phytec/conf/machine/*.conf

where you can find the platform name to the corresponding product IDs. All this
information is also displayed by the phyLinux script.

E.g.: phycore-am335x-1.conf machine configuration file:

#@TYPE: Machine
#@NAME: phycore-am335x-1
#@DESCRIPTION: PCM-051-12102F0C.A1/KPCM-953 (Kit)

Machine phycore-am335x-1 represents the PCM-953 (Kit) CB with the
PCM-051-12102F0C.A1 SOM.

3.4 Selecting a Software Platform

 To select the correct SoC, BSP version and platform call:
host$./phyLinux init

It is also possible to pass this information directly using command line parameters:
host$./phyLinux init -p am335x -r PD15.1-rc1 -m phycore-am335x-1

Please read section "Initialization" in the Yocto Reference Manual for more information.

3.5 Starting the Build Process

Refer to Yocto Reference Manual "Start the Build".

http://www.phytec.de/produkte/software/yocto/phytec-unified-yocto-bsp-releases/
http://devwiki.phytec.de/mediawiki/index.php?title=Category:SW_Releases
mailto:%23@TYPE:
mailto:%23@NAME:
mailto:%23@DESCRIPTION:

Yocto AM335x BSP Manual

4  PHYTEC Messtechnik GmbH 2017 L-818e_3

3.6 BSP Images

All images generated by Bitbake are deployed to yocto/build/deploy/images/<machine>.

The following list shows for example all files generated for the AM335x SoC,
phycore-am335x-1 machine:

• Barebox: barebox.bin
• Barebox configuration: barebox.config
• Barebox PBL

• for memory boot devices (MMC, NAND): MLO
• for memory boot devices (SPI): MLO.spi
• for memory boot devices (MMC, NAND): MLO
• for peripheral boot devices (EMAC, UART): MLO.per

• Kernel: zImage
• Kernel device tree file: zImage-am335x-phycore-rdk.dtb
• Kernel configuration: zImage.config
• Root filesystem: phytec-qt5demo-image-phycore-am335x-1.tar.gz,

phytec-qt5demo-image-phycore-am335x-1.ubifs,
phytec-qt5demo-image-phycore-am335x-1.ext4

• SD card image: phytec-qt5demo-image-phycore-am335x-1.sdcard

 Booting the System

4 Booting the System

The default boot source for phyCORE-AM335x modules is the NAND Flash. The easiest way
to get started with your freshly created images, is writing them to an SD card and setting
the boot configuration accordingly. For information how to set the correct boot
configuration refer to the corresponding hardware manual for your Phytec board.

4.1 Booting from NAND Flash

NAND is the default boot source. To update the software of the NAND Flash see 5 "Updating
the Software".

4.2 Booting from SD Card

Booting from SD card is useful in several situations, e.g. if the board does not start any
more due to a damaged bootloader. To boot from SD card the SD card must be formatted in
a special way, because the AM335x does not use file systems. Instead it is hard coded at
which sectors of the SD card the AM335x expects the bootloader.

There are two ways to create a bootable SD card. You can either use:
• a single prebuild SD card image, or
• a script which creates a formatted SD card allowing to copy the four individual images

(MLO, barebox.bin, linuximage and oftree file) manually

4.2.1 Using a single, prebuild SD Card Image

The first possibility is to use the SD card image built by Bitbake, a tool integrated in Yocto.
This image has the ending *.sdcard and can be found under
build/deploy/images/<MACHINE>/<IMAGENAME>-<MACHINE>.sdcard. It contains all BSP
files in already correctly formatted partitions and can be copied to the SD card easily using
the single Linux command dd.

You can also find ready-to-use *.sdcard images on our FTP server:
ftp://ftp.phytec.de/pub/Software/Linux/BSP-Yocto-AM335x/.

To create your bootable SD card with the dd command you must have root
privileges. Because of that you must be very careful when selecting the
destination device for the dd command! All files on the selected
destination device will be erased immediately without any further query!
Consequently, having selected the wrong device can also erase your hard
drive!

 PHYTEC Messtechnik GmbH 2017 L-818e_3 5

ftp://ftp.phytec.de/pub/Software/Linux/BSP-Yocto-AM335x/

Yocto AM335x BSP Manual

6  PHYTEC Messtechnik GmbH 2017 L-818e_3

To create your bootable SD card you must first find out the correct device name of your SD
card and possible partitions and then unmount the partitions before you start copying the
image to the SD card.

 In order to get the correct device name first remove your SD card and execute ls /dev.

 Now insert your SD card and execute ls /dev again.

 Compare the two outputs to find the new device name(s) listed in the second output.
These are the device names of the SD card (device, and partitions if the SD card is
formatted).

 In order to verify the device names found, execute the command dmesg. Within the last
lines of its output you should also find the device names, for example sde (depending on
your system).

Now that you have the device name /dev/<your_device> (e.g. /dev/sde) you can recognize
the partitions which must be unmounted if the SD card is formatted, too. In this case you
will also find /dev/<your_device> with an appended number (e.g. /dev/sde1) in the
output. These represent the partition(s) to be unmounted.

 Unmount all partitions with:
host$ umount /dev/<your_device><number>

 After having unmounted all devices with an appended number
(<your_device><number>), you can create your bootable SD card with
host$ sudo dd if=<IMAGENAME>-<MACHINE>.sdcard of=/dev/<your_device>

bs=1MB conv=fsync

using the device name (<your_device>) without appended number (e.g. sde) which
stands for the whole device.

The parameter conv=fsync forces a sync operation on the device before dd returns. This
ensures that all blocks are written to the SD card and are not still in memory.

 Booting the System

 PHYTEC Messtechnik GmbH 2017 L-818e_3 7

4.2.2 Using a Script and the four individual Images (MLO, barebox.bin, linuximage
and oftree file)

It is also possible to make the steps described in the previous section manually by using a
script to create a proper formatted SD card. The script creates two partitions. The first one
is formatted with vfat and the second one is formatted with ext4.

#!/bin/bash
if [! "$1" = "/dev/sda"] ; then
 unset LANG
 DRIVE=$1
 umount $DRIVE"1"
 umount $DRIVE"2"
 if [-b "$DRIVE"] ; then
 dd if=/dev/zero of=$DRIVE bs=1024 count=1024
 SIZE=`fdisk -l $DRIVE | grep Disk | awk '{print $5}'`
 echo DISK SIZE - $SIZE bytes
 CYLINDERS=`echo $SIZE/255/63/512 | bc`
 echo CYLINDERS - $CYLINDERS
 {
 echo ,25,0x0C,*
 echo ,,,-
 } | sfdisk -D -H 255 -S 63 -C $CYLINDERS $DRIVE
 mkfs.vfat -F 32 -n "boot" ${DRIVE}1
 mke2fs -t ext4 -L "rootfs" ${DRIVE}2
 fi
fi

 Copy this script into a file and make it executable with:
host$ chmod +x copyscript.sh

 Execute it with:
host$ sudo ./copyscript.sh /dev/<sddevice>

Afterwards the images need to be copied to the SD card.

 Mount the first partition (vfat) and copy the MLO, barebox.bin, linuximage and oftree file
to it.
host$ mount /dev/sd<X>
host$ cp yocto/build/deploy/images/<MACHINE>/MLO /mnt/MLO
host$ cp yocto/build/deploy/images/<MACHINE>/barebox.bin

/mnt/barebox.bin
host$ cp yocto/build/deploy/images/<MACHINE>/zImage /mnt/linuximage
host$ cp yocto/build/deploy/images/<MACHINE>/zImage-am335x-phycore-

rdk.dtb /mnt/oftree

Yocto AM335x BSP Manual

Make sure that the images are named as mentioned before, as the
bootloader expects them exactly like that.

The <IMAGENAME>-<MACHINE>.ubifs rootfs image is actually not used for
booting but in order to allow updating the NAND root filesystem you
should copy it, too.

 In case you want to boot the whole Linux from SD card, also mount the ext4 partition.

 Then untar <IMAGENAME>-<MACHINE>.tgz rootfs image to it:
host$ sudo mount /dev/sd<X>2 /media/rootfs
host$ sudo tar zxf yocto/build/deploy/images/<MACHINE>/<IMAGENAME>-

<MACHINE>.tgz -C /media/rootfs

 Do not forget to properly unmount the SD card with:
host$ sudo umount /media

4.3 Booting from UART

If no SD card slot is available, it is also useful to be able to boot at least the bootloader
from UART. This is possible with the UART0 interface of the AM335x. Make sure that the
boot mode is set correctly to serial. The boot mode is set correctly, if you see a lot of "C"
characters on the console output after booting.

The following script facilitates booting from serial. But this can also be done directly from
a serial terminal program like minicom by loading first the MLO.per (first stage bootloader
for peripheral boot) and then the barebox.bin file over xmodem. When using the script,
please close all serial terminal programs.
#!/bin/sh
SERIAL=/dev/<ttyXX>
FILEPATH=<path>
MLO=$FILEPATH/MLO.per
BAREBOX=$FILEPATH/barebox.bin

stty -F $SERIAL 115200
sx -vv $MLO < $SERIAL > $SERIAL
sx -vv $BAREBOX < $SERIAL > $SERIAL
minicom -D $SERIAL

Change the SERIAL variable to the correct tty device on your host and adapt the FILEPATH
to your needs.

After the MLO.per and barebox.bin files are transferred over serial to the target, the
minicom starts with showing the barebox.bin output and you will get to the barebox
prompt.

8  PHYTEC Messtechnik GmbH 2017 L-818e_3

 Booting the System

 PHYTEC Messtechnik GmbH 2017 L-818e_3 9

4.4 Booting from SPI NOR Flash

Most of the AM335x modules (e.g. phyCORE-AM335x and phyFLEX-AM335x) are optionally
equipped with SPI NOR Flash. To boot from SPI Flash, select the correct boot mode as
described in the hardware manual of your Phytec board. The SPI Flash is usually quite small
so that only the two bootloaders, the Linux kernel and the device tree can be stored. The
root filesystem is taken from NAND Flash by default. How to flash the SPI NOR is described
in section 5 "Updating the Software".

4.5 Booting a Bootloader from Network

AM335x's ROM code can boot an MLO from the first port of the EMAC interface, using the
standard TCP/IP network boot protocols BOOTP and TFTP.

Note: Not all AM335x boards are able to boot from network.

The following tools will be needed to boot the MLO (barebox) from Ethernet:
1. a BOOTP/DHCP server
2. a TFTP server and
3. a tool for starting/stopping a service.

 For Ubuntu install:

host$ sudo apt-get install isc-dhcp-server tftpd-hpa xinetd

After the installation of the packages you have to configure the DHCP and TFTP server.

Configurations for the DHCP server:

 Edit /etc/dhcp/dhcpd.conf.

Basic boot sequence: AM335x ROM -> MLO -> barebox -> kernel
subnet 192.168.3.0 netmask 255.255.255.0
{
 # The filenames must correspond to the barebox and MLO files which
are placed in the /tftpboot directory
 range dynamic-bootp 192.168.3.11 192.168.3.100;
 if substring (option vendor-class-identifier, 0, 10) = "AM335x ROM"
 {
 filename "MLO";
 }
 elsif substring (option vendor-class-identifier, 0, 18) = "am335x
barebox-mlo"
 {
 filename "barebox.bin";
 }
 range 192.168.3.101 192.168.3.199;
}

Yocto AM335x BSP Manual

10  PHYTEC Messtechnik GmbH 2017 L-818e_3

Set up for the TFTP server:

 Edit /etc/xinetd.d/tftp.
service tftp
{
 protocol = udp
 port = 69
 socket_type = dgram
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = -s /tftpboot
 disable = no
}

 Create a directory to store the TFTP files:
host$ sudo mkdir /tftpboot
host$ sudo chmod -R 777 /tftpboot
host$ sudo chown -R nobody /tftpboot

 Edit /etc/default/isc-dhcp-server to bind the server to a single network interface:

INTERFACES="eth1"

 Configure a static IP address for the appropriate interface:
host$ ifconfig eth1

You will receive:
eth1 Link encap:Ethernet HWaddr 00:11:6b:98:e3:47
 inet addr:192.168.3.10 Bcast:192.168.3.255

Mask:255.255.255.0

 Copy your barebox images to the /tftpboot directory.

 Restart the services to pick-up the configuration changes:
host$ sudo service isc-dhcp-server restart
host$ sudo service tftpd-hpa restart

 Now connect the first port of the board to your host system, configure the board to
network boot and start it.

A more detailed network boot description can be found on the following web page.
http://processors.wiki.ti.com/index.php/Ubuntu_12.04_Set_Up_to_Network_Boot_an_AM
335x_Based_Platform

http://processors.wiki.ti.com/index.php/Ubuntu_12.04_Set_Up_to_Network_Boot_an_AM335x_Based_Platform
http://processors.wiki.ti.com/index.php/Ubuntu_12.04_Set_Up_to_Network_Boot_an_AM335x_Based_Platform

 Booting the System

 PHYTEC Messtechnik GmbH 2017 L-818e_3 11

4.6 Booting the Kernel from Network

In this case booting from network means to load the kernel over TFTP and the root
filesystem over NFS. The bootloader itself must already be loaded from any other boot
device available.

4.6.1 Development Host Preparations

On the development host a TFTP server must be installed and configured. An example how
to set up a TFTP server can be found in the section above "Booting a Bootloader from
Network". Usually TFTP servers are using the /tftpboot directory to fetch files from. If you
built your own images, please copy them from the BSP’s build directory to there.

We also need a network connection between the embedded board and the TFTP server. The
server should be set to IP 192.168.3.10 and netmask 255.255.255.0, or a DHCP server can
be used instead. Setting up a DHCP server is also explained in the section "Booting a
Bootloader from Network".

After the installation of the TFTP server, an NFS server needs to be installed, too. The NFS
server is not restricted to a certain file system location, so all we have to do on most
distributions is to modify the file /etc/exports and export our root filesystem to the
embedded network. In this example file the whole work directory is exported, and the ”lab
network” address of the development host is 192.168.3.10, so the IP addresses have to be
adapted to the local needs:
/home/<user>/<rootfspath>

192.168.3.10/255.255.255.0(rw,no_root_squash,sync,no_subtree_check)

Where <user> must be replaced with your home directory name. The <rootfspath> can be
set to a folder which contains a rootfs tar.gz image extracted with sudo.

4.6.2 Preparations on the Embedded Board

 To find out the Ethernet settings in the bootloader of the target, type:
bootloader$ ifup eth0
bootloader$ devinfo eth0

With your development host set to IP 192.168.3.10 and netmask 255.255.255.0, the
target should return:

ipaddr=192.168.3.11
netmask=255.255.255.0
gateway=192.168.3.10
serverip=192.168.3.10

 If you need to change something, type :
bootloader$ edit /env/network/eth0

Yocto AM335x BSP Manual

12  PHYTEC Messtechnik GmbH 2017 L-818e_3

Here you can also change the IP address to DHCP instead of using a static one.

 Just configure: ip=dhcp

 Edit the settings if necessary and save them by leaving the editor with CTRL+D.

 Type saveenv if you made any changes.

 Set up the paths for TFTP and NFS in the file /env/boot/net.

4.6.3 Booting the Embedded Board

 To boot from network call
bootloader$ boot net

or restart the board and press m to stop autoboot.

You will get a menu:
Welcome to Barebox
1: Boot: nand (UBI)
2: Boot: kernel & rootfs on SD card
3: Boot: network (tftp, nfs)
4: Boot: SPI NOR Flash
5: Settings
6: Shell
7: Reset

 Press 3 and then Enter in order to boot the board from network.

4.7 Custom Boot Setup

You may have custom boot requirements that are not covered by the four available boot
files (nand, net, mmc, spi). If this is the case you can create your own custom boot entry
specifying the kernel and root filesystem location.

 First create your own boot entry in barebox, for example named "custom":

bootloader$ edit /env/boot/custom

 Use the following template to specify the location of the Linux kernel and root
filesystem.
#!/bin/sh

global.bootm.image="<kernel_loc_bootm.image>"
global.bootm.oftree="<dts_loc_bootm.oftree>"

nfsroot="<nfs_root_path>"
bootargs-ip
/env/config-expansions

global.linux.bootargs.dyn.root="<rootfs_loc_dyn.root>"

 Booting the System

 PHYTEC Messtechnik GmbH 2017 L-818e_3 13

Please note that the text in <> such as <kernel_loc_bootm.image>, <rootfs_loc_dyn.root>,
and <nfs_root_path> are intended to be replaced with user specific values as described in
the following.

• <kernel_loc_bootm.image> specifies the location of the Linux kernel image and can be:
/dev/nand0.root.ubi.kernel - To boot the Linux kernel from NAND Flash

/dev/m25p0.kernel - To boot the Linux kernel form SPI NOR Flash
/mnt/tftp/linuximage - To boot the Linux kernel via TFTP
/boot/linuximage - To boot the Linux kernel from SD/MMC card

• <dts_loc_bootm.oftree> specifies the location of the device tree binary and can be:
/dev/nand0.root.ubi.oftree - To boot the device tree binary from NAND

Flash
/dev/m25p0.oftree - To boot the device tree binary from SPI NOR Flash
/mnt/tftp/oftree - To boot the device tree binary via TFTP
/boot/oftree - To boot the device tree binary from SD/MMC card

• <rootfs_loc_dyn.root> specifies the location of the root filesystem and can be:
root=ubi0:root ubi.mtd=root rootfstype=ubifs - To mount the root file-

system from NAND Flash
root=/dev/nfs nfsroot=$nfsroot,vers=3,udp rw consoleblank=0

- To mount the root filesystem via NFS
root=/dev/mmcblk0p2 rootwait - To mount the root filesystem from

SD/MMC card

• <nfs_root_path> is only required if mounting the root filesystem from NFS is desired.
Replace with the following:
nfsroot="/home/${global.user}/nfsroot/${global.hostname}"

 After completing the modifications exit the editor using CTRL+D and save the
environment:
bootloader$ saveenv

 To run your custom boot entry from the barebox shell enter:

bootloader$ boot custom

If you want to configure the bootloader for booting always from "custom", you need to
create the /env/nv/boot.default file. Here you can just insert "custom" and save it.
Otherwise the boot sources and boot order is defined in /env/init/bootsource.

Yocto AM335x BSP Manual

14  PHYTEC Messtechnik GmbH 2017 L-818e_3

5 Updating the Software

In this chapter we explain how to use the barebox bootloader to update the images in
NAND and SPI NOR Flash.

5.1 Updating from Network

AM335x boards that have an Ethernet connector can be updated over network. As the
bootloader only supports the first Ethernet port, the development host has to be
connected to the first Ethernet port of the target. Be sure to set up the development host
correctly. The IP needs to be set to 192.168.3.10, the netmask to 255.255.255.0, and a
TFTP server needs to be available.

 Boot the system using any boot device available.

 Press any key to stop autoboot, then type:
bootloader$ ifup eth0
bootloader$ devinfo eth0

The Ethernet interfaces should be configured like this:

ipaddr=192.168.3.11
netmask=255.255.255.0
gateway=192.168.3.10
serverip=192.168.3.10

If a DHCP server is available, it is also possible to set:
ip=dhcp

If you need to change something:

 Type:
bootloader$ edit /env/network/eth0

 Edit the settings, save them by leaving the editor with CTRL+D and type:
bootloader$ saveenv

 Reboot the board.

5.1.1 Updating NAND Flash from Network

To update the second stage bootloader MLO you may use the barebox_update command.
This provides a handler which automatically erases and flashes copies of the MLO image
into the first four blocks of the NAND Flash. This makes the system more robust against ECC
issues. If one block is corrupted the ROM loader does use the next block.

 Type:
bootloader$ barebox_update -t MLO.nand /mnt/tftp/MLO

 Updating the Software

 PHYTEC Messtechnik GmbH 2017 L-818e_3 15

On startup the TFTP server is automatically mounted to /mnt/tftp. So copying an image
from TFTP to flash can be done in one step. Do not get confused when doing an ls on the
/mnt/tftp folder. The TFTP protocol does not support anything like ls so the folder will
appear to be empty.

The barebox as third stage bootloader can also be updated with a barebox_update
command. But it is only stored once in the flash.

 Type:
bootloader$ barebox_update -t nand /mnt/tftp/barebox.bin

We recommend to also erase the environment of the old barebox. Otherwise the new
barebox would use the old environment.

 First erase the old environment with:

bootloader$ erase /dev/nand0.bareboxenv.bb

After erasing the environment, you have to reset your board. Otherwise the barebox still
uses the old environment.

 To reset your board in order to get the new barebox running type:

bootloader$ reset

 Create UBI volumes for Linux kernel, oftree and root filesystem in NAND:
bootloader$ ubiformat /dev/nand0.root
bootloader$ ubiattach /dev/nand0.root

bootloader$ ubimkvol -t static /dev/nand0.root.ubi kernel 8M
bootloader$ ubimkvol -t static /dev/nand0.root.ubi oftree 1M
bootloader$ ubimkvol -t dynamic /dev/nand0.root.ubi root 0

 Now get the Linux kernel and oftree from your TFTP server and store it also into the NAND
Flash with:
bootloader$ ubiupdatevol /dev/nand0.root.ubi.kernel

/mnt/tftp/linuximage
bootloader$ ubiupdatevol /dev/nand0.root.ubi. oftree /mnt/tftp/oftree

 For flashing Linux’s root filesystem to NAND, please use:
bootloader$ cp –v /mnt/tftp/root.ubifs /dev/nand0.root.ubi.root

 Change the boot configuration of your board to NAND boot if necessary, and reset your
board.

Yocto AM335x BSP Manual

5.1.2 Updating SPI NOR Flash from Network

The MLO for the SPI NOR Flash has to be byte-swapped. There is a handler for the
barebox_update command to make this on the fly. Thus a special MLO image is not
required.

 To update the second stage bootloader in the SPI Flash from network do the following:
bootloader$ barebox_update -t MLO.spi /mnt/tftp/MLO

 After that, use the following command to flash the barebox:
bootloader$ barebox_update -t spi /mnt/tftp/barebox.bin

We recommend to also erase the environment of the old barebox. Otherwise the new
barebox would use the old environment.

 First erase the old environment with:

bootloader$ erase /dev/m25p0.bareboxenv

After erasing the environment, you have to reset your board. Otherwise the barebox still
uses the old environment.

 To reset your board in order to get the new barebox running type:

bootloader$ reset

 The kernel and oftree are then updated with the regular erase and cp commands:
bootloader$ erase /dev/m25p0.kernel
bootloader$ cp /mnt/tftp/linuximage /dev/m25p0.kernel
bootloader$ erase /dev/m25p0.oftree
bootloader$ cp /mnt/tftp/oftree /dev/m25p0.oftree

 Change the boot configuration of your board to NOR boot if necessary, and reset your
board.

The root filesystem is too big to fit into the SPI NOR Flash. So the default configuration
when booting from SPI is to take the root filesystem from NAND Flash.

When booting from SPI Flash the AM335x expects the MLO in a big endian
format. The barebox_update command with the MLO.spi type, takes the
MLO image and converts it on the fly to the correct format and flashes it to
SPI. If you can not use the barebox_update command you can take directly
the MLO.spi file which also drops out of the image build.

16  PHYTEC Messtechnik GmbH 2017 L-818e_3

 Updating the Software

 PHYTEC Messtechnik GmbH 2017 L-818e_3 17

5.2 Updating from SD Card

To update an AM335x board from SD card the SD card used for updating needs to be
mounted after the board is powered and the boot sequence is stopped on the bootloader
prompt. If the board is booted from SD card the card is already mounted automatically
under /boot. In case the board is booted from any other device the SD card needs to be
mounted manually with:
bootloader$ mkdir /boot
bootloader$ mmc0.probe=1
bootloader$ mount /dev/mmc0.0 /boot

5.2.1 Updating NAND Flash from SD Card

To update the images on the NAND Flash from SD card basically the same commands as
updating from TFTP are used with just the path parameters adapted.

 Type:
bootloader$ barebox_update -t MLO.nand /boot/MLO
bootloader$ barebox_update -t nand /boot/barebox.bin

We recommend to also erase the environment of the old barebox. Otherwise the new
barebox would use the old environment.

 First erase the old environment with:

bootloader$ erase /dev/nand0.bareboxenv.bb

After erasing the environment, you have to reset your board. Otherwise the barebox still
uses the old environment.

 To reset your board in order to get the new barebox running type:

bootloader$ reset

 Create UBI volumes for Linux kernel, oftree and root filesystem in NAND:
bootloader$ ubiformat /dev/nand0.root
bootloader$ ubiattach /dev/nand0.root

bootloader$ ubimkvol -t static /dev/nand0.root.ubi kernel 8M
bootloader$ ubimkvol -t static /dev/nand0.root.ubi oftree 1M
bootloader$ ubimkvol -t dynamic /dev/nand0.root.ubi root 0

 Now get the Linux kernel and oftree from your SD card and store it also into the NAND
Flash with:
bootloader$ ubiupdatevol /dev/nand0.root.ubi.kernel /boot/linuximage
bootloader$ ubiupdatevol /dev/nand0.root.ubi. oftree /boot/oftree

 For flashing Linux’s root filesystem to NAND, please use:
bootloader$ cp /boot/root.ubifs /dev/nand0.root.ubi.root

Yocto AM335x BSP Manual

 Change the boot configuration of your board to NAND boot if necessary, and reset your
board.

5.2.2 Updating SPI NOR Flash from SD Card

To update the images on the SPI Flash from SD card basically the same commands as
updating from TFTP are used with just the path parameters adapted.

 Type:
bootloader$ barebox_update -t MLO.spi /boot/MLO
bootloader$ barebox_update -t spi /boot/barebox.bin

We recommend to also erase the environment of the old barebox. Otherwise the new
barebox would use the old environment.

 First erase the old environment with:

bootloader$ erase /dev/m25p0.bareboxenv

After erasing the environment, you have to reset your board. Otherwise the barebox still
uses the old environment.

 To reset your board in order to get the new barebox running type:

bootloader$ reset

 The kernel and oftree are then updated with the regular erase and cp commands:
bootloader$ erase /dev/m25p0.kernel
bootloader$ cp /boot/linuximage /dev/m25p0.kernel

bootloader$ erase /dev/m25p0.oftree
bootloader$ cp /boot/oftree /dev/m25p0.oftree

 Change the boot configuration of your board to NOR boot if necessary, and reset your
board.

The root filesystem is too big to fit into the SPI NOR Flash. So the default configuration
when booting from SPI is to take the root filesystem from NAND Flash.

When booting from SPI Flash the AM335x expects the MLO in a big endian
format. The barebox_update command with the MLO.spi type, takes the
MLO image and converts it on the fly to the correct format and flashes it to
SPI. If you can not use the barebox_update command you can take directly
the MLO.spi file which also drops out of the image build.

18  PHYTEC Messtechnik GmbH 2017 L-818e_3

 Updating the Software

 PHYTEC Messtechnik GmbH 2017 L-818e_3 19

5.3 Updating from USB Flash Drive

It is not possible to boot an AM335x board from an USB Flash Drive. However, the barebox
bootloader does support USB Flash Drives and is thus also able to update NAND and SPI
NOR Flashes from them.

 To update from USB Flash Drive boot the system from any bootable device.

 Press any key to stop autoboot.

 Plug in an USB Flash Drive containing the images. Barebox supports vfat and ext4 (read
only).

 Check the USB bus with following command:
bootloader$ usb

This should print some output like:
USB: scanning bus for devices...
Bus 001 Device 001: ID 058f:6387 Intenso Rainbow Line
Using index 0 for the new disk
1 USB Device(s) found

If the USB Flash Drive is inserted during boot, it might not be detected the first time. In
this case execute the usb command twice. This will create a device disk0 under /dev and the
partitions which can be listed with:
bootloader$ ls /dev/disk0*

You should see:

/dev/disk0 /dev/disk0.0

 Now mount the single partitions with:

bootloader$ mkdir /mnt/disk
bootloader$ mount /dev/disk0.0 /mnt/disk/

Yocto AM335x BSP Manual

20  PHYTEC Messtechnik GmbH 2017 L-818e_3

5.3.1 Updating NAND Flash from USB Flash Drive

To update the images on the NAND Flash from USB Flash Drive basically the same
commands as updating from TFTP are used with just the path parameters adapted.

 Type:
bootloader$ barebox_update -t MLO.nand /mnt/disk/MLO
bootloader$ barebox_update -t nand /mnt/disk/barebox.bin

We recommend to also erase the environment of the old barebox. Otherwise the new
barebox would use the old environment.

 First erase the old environment with:

bootloader$ erase /dev/nand0.bareboxenv.bb

After erasing the environment, you have to reset your board. Otherwise the barebox still
uses the old environment.

 To reset your board in order to get the new barebox running type:

bootloader$ reset

 Create UBI volumes for Linux kernel, oftree and root filesystem in NAND:

bootloader$ ubiformat /dev/nand0.root
bootloader$ ubiattach /dev/nand0.root

bootloader$ ubimkvol -t static /dev/nand0.root.ubi kernel 8M
bootloader$ ubimkvol -t static /dev/nand0.root.ubi oftree 1M
bootloader$ ubimkvol -t dynamic /dev/nand0.root.ubi root 0

 Now get the Linux kernel and oftree from your USB Flash Drive and store it also into the
NAND Flash with:
bootloader$ ubiupdatevol /dev/nand0.root.ubi.kernel

/mnt/disk/linuximage
bootloader$ ubiupdatevol /dev/nand0.root.ubi. oftree /mnt/disk/oftree

 For flashing Linux’s root filesystem to NAND, please use:
bootloader$ cp /mnt/disk/root.ubifs /dev/nand0.root.ubi.root

 Change the boot configuration of your board to NAND boot if necessary, and reset your
board.

 Updating the Software

5.3.2 Updating SPI NOR Flash from USB Flash Drive

To update the images on the SPI Flash from USB Flash Drive basically the same commands
as updating from TFTP are used with just the path parameters adapted.

 Type:
bootloader$ barebox_update -t MLO.spi /mnt/disk/MLO
bootloader$ barebox_update -t spi /mnt/disk/barebox.bin

We recommend to also erase the environment of the old barebox. Otherwise the new
barebox would use the old environment.

 First erase the old environment with:

bootloader$ erase /dev/m25p0.bareboxenv

After erasing the environment, you have to reset your board. Otherwise the barebox still
uses the old environment.

 To reset your board in order to get the new barebox running type:

bootloader$ reset

 The kernel and oftree are then updated with the regular erase and cp commands:
bootloader$ erase /dev/m25p0.kernel
bootloader$ cp /mnt/disk/linuximage /dev/m25p0.kernel

bootloader$ erase /dev/m25p0.oftree
bootloader$ cp /mnt/disk/oftree /dev/m25p0.oftree

 Change the boot configuration of your board to NOR boot if necessary, and reset your
board.

The root filesystem is too big to fit into the SPI NOR Flash. So the default configuration
when booting from SPI is to take the root filesystem from NAND Flash.

When booting from SPI Flash the AM335x expects the MLO in a big endian
format. The barebox_update command with the MLO.spi type, takes the
MLO image and converts it on the fly to the correct format and flashes it to
SPI. If you can not use the barebox_update command you can take directly
the MLO.spi file which also drops out of the image build.

 PHYTEC Messtechnik GmbH 2017 L-818e_3 21

Yocto AM335x BSP Manual

22  PHYTEC Messtechnik GmbH 2017 L-818e_3

5.4 Troubleshooting NAND Flash Update

5.4.1 Updating from BSP-Yocto-AM335x-PD15.x.x or
BSP-Yocto-phyCORE-AM335x-R2-PD16.1.x

In the BSP-Yocto-AM335x-PD16.2.0 the NAND Flash's partition layout has changed.
Instead of having a separate Linux image and oftree partition the images are now part of
the root filesystem partition. Inside the root UBI two new static volumes are being
created. So the kernel and oftree are now kept more secure and protected with the wear
leveling of the UBI. There is also a barebox_backup partition being introduced in the
BSP-Yocto-AM335x-PD16.2.0 release. To update the BSP use one of the following two
ways:

 Boot the new BSP from a different bootsource than NAND and follow the update
instructions in the previous sections.

 Update the BSP using an older release. Update the MLO and the barebox with the
barebox_update command and delete the environment partition as described in the
update sections above. Reboot the board from NAND and run again the barebox_update
command for the barebox.bin to ensure that the new barebox_backup partition is being
written. Continue with updating the kernel, device tree and root filesystem as described
in the previous sections.

5.4.2 Updating from a PTXdist BSP

When updating the images on the NAND Flash from a PTXdist-based release (Linux Kernel
3.2) to a Yocto-based release, there might be an UBIFS issue coming up when mounting the
root filesystem. The old Linux kernel had an issue with subpage write which required to set
the VID header offset to 2048. This is not needed any more. But because of that the UBI
parameters changed which requires a different call:
bootloader$ ubiformat –y -f /dev/nand0.root -s 512
bootloader$ ubiattach /dev/nand0.root
bootloader$ ubimkvol /dev/nand0.root.ubi root 0
bootloader$ cp /mnt/disk/root.ubifs /dev/nand0.root.ubi.root

 Device Tree (DT)

 PHYTEC Messtechnik GmbH 2017 L-818e_3 23

6 Device Tree (DT)

6.1 Introduction

The following text describes briefly the Device Tree and can be found in the Linux kernel
(linux/Documentation/devicetree/usage-model.txt).

"The "Open Firmware Device Tree", or simply Device Tree (DT), is a data structure and
language for describing hardware. More specifically, it is a description of hardware that is
readable by an operating system so that the operating system doesn't need to hard code
details of the machine.
Structurally, the DT is a tree, or acyclic graph with named nodes, and nodes may have an
arbitrary number of named properties encapsulating arbitrary data. A mechanism also
exists to create arbitrary links from one node to another outside of the natural tree
structure.
Conceptually, a common set of usage conventions, called 'bindings', is defined for how
data should appear in the tree to describe typical hardware characteristics including data
busses, interrupt lines, GPIO connections, and peripheral devices."

The kernel is a really good source for a DT introduction. An overview of the device tree data
format can be found on the device tree usage page at devicetree.org:
http://devicetree.org/Device_Tree_Usage

6.2 Phytec AM335x BSP Device Tree Concept

The following sections explain some rules we have defined on how to set up device trees in
first place for our AM335x SoC based boards.

6.2.1 Basic DT Structure

The module include file Modul .dtsi contains all devices which are mounted on the module,
such as NAND Flash and RAM. Devices which come from the AM335x SoC but are just routed
down to the carrier board are not part of the Module .dtsi, but are included in the
Carrierboard .dtsi. The Board .dts includes the carrier board and module nodes. It also adds
partition tables and enables all hardware configurable nodes of the carrier board or the
module. I.e. the Board .dts shows the special characteristics of the board configuration.
For example, there are phyCORE-AM335x SOMs which may or may not have an SPI NOR
Flash mounted. Hence, the SPI NOR Flash is enabled (if available) in the Board .dts and not
in the Module .dtsi.

http://devicetree.org/Device_Tree_Usage

Yocto AM335x BSP Manual

Figure 1: Basic DT Structure of Phytec AM335x Boards

To make starting of the development easier, we have also created different device tree
include files for the various module options. E.g. there is already an am335x-phycore-som-
eeprom.dtsi which has the EEPROM enabled but not the SPI NOR Flash and the RTC. So you
can include the appropriate Module .dtsi to start directly with the development of the
Carrierboard .dtsi.

6.2.2 Expansion Boards and Displays

Different expansion boards can be mounted on different carrier boards. Some carrier
boards may have several connectors to support more than one expansion board at a time.
This requires a separate device tree for every expansion board / carrier board combination.

Figure 2: DTS Structure of Expansion Boards

24  PHYTEC Messtechnik GmbH 2017 L-818e_3

 Device Tree (DT)

 PHYTEC Messtechnik GmbH 2017 L-818e_3 25

To facilitate the use of expansion boards we created an Expansionboards .dtsi for every
expansion board/ carrier board / module combination. And then included all possible
extensions to a board file, but disabled them. To use an expansion board it can be enabled
in the Board .dts, or from the bootloader.

6.2.3 Switching Expansion Boards and Displays

Disconnect all power before connecting an expansion board. After you plugged in the
board, the software support can be activated in the bootloader without recompiling and
flashing the images.

Here is a simple example on how to switch from am335x-wega-peb-av-01 (HDMI Expansion
Board) to am335x-phytec-lcd-018-peb-av-02 (Display Expansion Board) on the
phyBOARD-Wega using the barebox bootloader.

The configuration for the currently selected expansion board am335x-wega-peb-av-01 can
be found in env/config-expansions.
#!/bin/sh
. /env/expansions/am335x-wega-peb-av-01

To switch to another expansion board the file config-expansions in the barebox
environment must be edited.

 To switch to am335x-phytec-lcd-018-peb-av-02, modify the env/config-expansions file

and add, or uncomment the text according to the expansion board used. E.g. for the
PEB-AV-02 on the phyBOARD-Wega:
#!/bin/sh
. /env/expansions/am335x-phytec-lcd-018-peb-av-02

config-expansions is called within each bootsource script (/env/boot/*) and will be
executed before every boot process. This will cause the barebox to modify the DT used
before the boot process. Information on which DT nodes are necessary for the expansion
board can be found in the expansion configuration files.

am335x-wega-peb-av-01:
of_fixup_status /hdmi
of_fixup_status /ocp/lcdc@0x4830e000

am335x-phytec-lcd-018-peb-av-02:
of_fixup_status /panel
of_fixup_status /backlight
of_fixup_status /ocp/lcdc@0x4830e000/
of_fixup_status /ocp/epwmss@48304000/
of_fixup_status /ocp/epwmss@48304000/ecap@48304100/
of_fixup_status /ocp/i2c@44e0b000/touchscreen@38/

of_fixup_status is a barebox command and will enable a given DT node.

Yocto AM335x BSP Manual

26  PHYTEC Messtechnik GmbH 2017 L-818e_3

6.2.4 Handle the Different Displays

If you have chosen a display as expansion you have to select the appropriate display
timings in the device tree.

 Look at the following lines at the end of config-expansions:
#7.0" display
#of_display_timings -S /panel/display-timings/ETM0700G0DH6

#5.7" display
#of_display_timings -S /panel/display-timings/ETMV570G2DHU

#4.3" display
#of_display_timings -S /panel/display-timings/ETM0430G0DH6

 Uncomment the of_display_timings -S ... command for your screen size and save the file
and environment.

Beside the display timings, you have to choose the right touchscreen type. Capacitive
touchscreens are the standard touchscreens used with our boards. Thus, if you want to use
a resistive touchscreen, you have to choose a modified board file in the
env/config-expansions. The board files for resistive touchscreens all have the suffix -res.

Example: If you have the am335x-phytec-lcd-018-peb-av-02 board, change the
env/config-expansions from:
#!/bin/sh
. /env/expansions/am335x-phytec-lcd-018-peb-av-02

to:
#!/bin/sh
. /env/expansions/am335x-phytec-lcd-018-peb-av-02-res

6.2.5 Pre-Bootloader's DT Handling

The pre-bootloader (MLO) uses only a very simple and small device tree, which also has
most nodes deactivated by default. The MLO detects the boot device and activates this
node only to load the barebox bootloader. The RAM setup is done in an early stage were no
device tree support is available.

 Device Tree (DT)

6.2.6 Bootloader's DT Modifications

The bootloader loads the device tree blob, a separate binary which includes the hardware
description (section 7). Then it will modify the memory node loaded at runtime. Thus, there
is no need to handle different RAM sizes in the device tree. However, there should be
always a memory node to ensure that the RAM size is set even if e.g. a different bootloader
without this feature is used. For this purpose a memory node dummy which sets the RAM
size to the size of the RDK module's memory is added in the Module.dsti.
/* This is a dummy node. Will be set by a bootloader */
memory {
 device_type = "memory";
 reg = <0x80000000 0x20000000>; /* 512 MB */
};

The memory node is not the only node, which is modified by the bootloader. Display nodes
and nodes of expansion boards can be enabled (section 6.2.3 "Switching Expansion Boards
and Displays"), whereas the partition table in the kernel device tree is modified by the
bootloader. Because of that it is not possible to use our device trees without modifications
with another bootloader, than the barebox bootloader from our unified BSP.

The bootloader itself contains also a device tree in the bootloader image which differs from
the one used by the kernel. So the barebox loads to start Linux, the kernel image and a
second device tree blob file.

The unified BSP contains device tree (DT) sources for the barebox
bootloader and for the Linux kernel. The bootloader DT holds only the
absolutely necessary hardware description for the basic board bring-up
and is also using a different DT model. Make sure you are working with the
right DT.

The following boot script for booting from SD card is an example for the barebox
configuration:

 Display the script with:
bootloader$ cat env/boot/mmc

#!/bin/sh

global.bootm.image=/boot/linuximage # kernel image
global.bootm.oftree=/boot/oftree # DTB

 PHYTEC Messtechnik GmbH 2017 L-818e_3 27

Yocto AM335x BSP Manual

28  PHYTEC Messtechnik GmbH 2017 L-818e_3

7 Accessing Peripherals

The following sections provide an overview of the supported hardware components and
their corresponding operating system drivers. Further changes can be ported upon
customer request.

To find out which boards and modules are supported by the release of Phytec’s AM335x
unified BSP described herein, visit our web page at
http://www.phytec.de/produkte/software/yocto/phytec-unified-yocto-bsp-releases/ and
click the corresponding BSP release. Now you can find all hardware supported in the
columns "Hardware Article Number" and the correct machine name in the corresponding
cell under "Machine Name".

To achieve maximum software re-use, the Linux kernel offers a sophisticated infrastructure,
layering software components into board specific parts. The BSP tries to modularize the kit
features as far as possible, which means that when a customized baseboard, or even a
customer specific module is developed, most of the software support can be re-used
without error-prone copy-and-paste. The kernel code corresponding to the supported
hardware can be found in the device trees (DT) linux/arch/arm/boot/dts/*.dts[i].

In fact, software re-use is one of the most important features of the Linux kernel and
especially of the ARM implementation, which always had to fight with an insane number of
possibilities of the System-on-Chip CPUs.

The whole board specific hardware is described in DTs and is not part of the kernel image
itself. The hardware description is in its own separate binary, called Device Tree Blob (DTB)
(section 6.2.6 "Bootloader's DT Modifications").

Please read also section 6.2 "Phytec AM335x BSP Device Tree Concept" to get an
understanding of our unified AM335x BSP device tree model.

The following sections provide an overview of the supported hardware components and
their operating system drivers on the AM335x platform.

7.1 AM335x Pin Muxing

The AM335x SoC contains many peripheral interfaces. In order to reduce package size and
lower overall system cost while maintaining maximum functionality, many of the AM335x
terminals can multiplex up to eight signal functions. Although there are many
combinations of pin multiplexing that are possible, only a certain number of sets, called IO
sets, are valid due to timing limitations. These valid IO sets were carefully chosen to
provide many possible application scenarios for the user.

http://www.phytec.de/produkte/software/yocto/phytec-unified-yocto-bsp-releases/

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 29

The pin muxing tool helps developers to find the correct IO sets for their application
(http://www.ti.com/tool/pinmuxtool).

Also see the following datasheet for a detailed pin configuration description
(http://www.ti.com/lit/ds/symlink/am3359.pdf).

AM335x's pin register addresses can be found in the AM335x Technical Reference Manual,
chapter 9 "Control Module" (http://www.ti.com/lit/ug/spruh73o/spruh73o.pdf).

The IO set configuration, also called muxing, is done in the Device Tree. The driver
pinctrl-single reads the DT's node "pinctrl-single,pins" and does the appropriate pin
muxing.

The following is an example of the pin muxing of the UART0 device in
am335x-pcm-953.dtsi:
&am33xx_pinmux {
 uart0_pins: pinmux_uart0 {
 pinctrl-single,pins = <
 0x170 (PIN_INPUT_PULLUP | MUX_MODE0)

/* uart0_rxd.uart0_rxd */
 0x174 (PIN_OUTPUT_PULLDOWN | MUX_MODE0)

/* uart0_txd.uart0_txd */
 >;
 };
};

All pin configuration nodes have to be a declared in the am33xx_pinmux node. The pin
configuration for the pinctrl-single nodes is specified by combined pairs of pinctrl register
offset and value within pinctrl-single,pins. Only the bits specified in pinctrl-single,function-
mask are updated.

 E.g., to set a pin for a device you can write:

pinctrl-single,pins = <0xdc 0x118>;

Where 0xdc is the offset from the pinctrl register base address for the device pinctrl
register, and 0x118 contains the desired value of the pinctrl register.

AM335x's pinctrl register base address is 0x44e10800 (am33xx.dtsi).

More information about the pinctrl-single driver binding can be found in the kernel
documentation linux/Documentation/devicetree/bindings/pinctrl/pinctrl-single.txt

http://www.ti.com/tool/pinmuxtool
http://www.ti.com/lit/ds/symlink/am3359.pdf
http://www.ti.com/lit/ug/spruh73o/spruh73o.pdf

Yocto AM335x BSP Manual

7.2 Serial TTYs

The AM335x SoC provides up to 6 so called UART units. Phytec boards support different
numbers of these UART units.

ttyO0 is always used as the standard console output.

 From the command line prompt of Linux user space you can easily check the availability

of other UART interfaces with:
target$ echo "test" > /dev/ttyO1

Be sure that the baud rate is set correctly on host and target side.

In order to get the currently configured baud rate, you can use the command stty on the
target. The following example shows how to copy all serial settings from ttyO0 (the
standard console on most AM335x boards) to ttyO1.

 First get the current parameters with:

target$ stty -F /dev/ttyO0 -g

 5500:5:1cb2:a3b:3:1c:7f:15:4:0:1:0:11:13:1a:0:12:f:17:16:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0

 Now use the output from the stty command above as argument for the next command:
target$ stty -F /dev/ ttyO1
5500:5:1cb2:a3b:3:1c:7f:15:4:0:1:0:11:13:1a:0:12:f:17:16:0:0:0:0:0:0:0
:0:0:0:0:0:0:0:0:0

Here is an example from am335x- pcm-953.dtsi:

/* UARTs */
&am33xx_pinmux {
 uart0_pins: pinmux_uart0 {
 pinctrl-single,pins = <
 0x170 (PIN_INPUT_PULLUP | MUX_MODE0)

/* uart0_rxd.uart0_rxd */
 0x174 (PIN_OUTPUT_PULLDOWN | MUX_MODE0)

/* uart0_txd.uart0_txd */
 >;
 };

 uart1_pins: pinmux_uart1 {
 pinctrl-single,pins = <
 0x180 (PIN_INPUT_PULLUP | MUX_MODE0)

/* uart1_rxd.uart1_rxd */
 0x184 (PIN_OUTPUT_PULLDOWN | MUX_MODE0)

/* uart1_txd.uart1_txd */

30  PHYTEC Messtechnik GmbH 2017 L-818e_3

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 31

 0x178 (PIN_OUTPUT_PULLDOWN | MUX_MODE0)
/* uart1_ctsn.uart1_ctsn */

 0x17C (PIN_INPUT_PULLUP | MUX_MODE0)
/* uart1_rtsn.uart1_rtsn */

 >;
 };

 uart2_pins: pinmux_uart2 {
 pinctrl-single,pins = <
 0x12C (PIN_INPUT_PULLUP | MUX_MODE1)

/* mii1_tx_clk.uart2_rxd */
 0x130 (PIN_OUTPUT_PULLDOWN | MUX_MODE1)

/* mii1_rx_clk.uart2_txd */
 >;
 };

 uart3_pins: pinmux_uart3 {
 pinctrl-single,pins = <
 0x134 (PIN_INPUT_PULLUP | MUX_MODE1)

/* mii1_rxd3.uart3_rxd */
 0x138 (PIN_OUTPUT_PULLDOWN | MUX_MODE1)

/* mii1_rxd2.uart3_txd */
 >;
 };
};

&uart0 {
 pinctrl-names = "default";
 pinctrl-0 = <&uart0_pins>;
};

&uart1 {
 pinctrl-names = "default";
 pinctrl-0 = <&uart1_pins>;
};

&uart2 {
 pinctrl-names = "default";
 pinctrl-0 = <&uart2_pins>;
};

&uart3 {
 pinctrl-names = "default";
 pinctrl-0 = <&uart3_pins>;
};

Yocto AM335x BSP Manual

32  PHYTEC Messtechnik GmbH 2017 L-818e_3

7.2.1 RS-485

The phyBOARD-Regor provides one RS-485 interface derived from UART1. The following
code snippet can be found in the am335x-regor.dtsi:
/* RS485 – UART1 */
&am33xx_pinmux {
 uart1_rs485_gpio_pin: pinmux_uart1_rs485_pins {
 pinctrl-single,pins = <
 0x180 (PIN_INPUT_PULLUP | MUX_MODE0)

/* uart1_rxd.uart1_rxd */
 0x184 (PIN_OUTPUT_PULLDOWN | MUX_MODE0)

/* uart1_txd.uart1_txd */
 0x17C (PIN_INPUT_PULLUP | MUX_MODE7)

/* uart1_rtsn.gpio0_13 */
 >;
 };
};

&uart1 {
 pinctrl-names = "default";
 pinctrl-0 = <&uart1_rs485_pins>;
 status = "okay";
 rs485-rts-active-high;
 rts-gpio = <&gpio0 13 GPIO_ACTIVE_HIGH>;
 rs485-rts-delay = <0 0>;
 linux,rs485-enabled-at-boot-time;
};

For first easy testing the RS-485 port must be configured.

 Execute:
target$ stty -F /dev/ttyO2 -echo -echoe -echok -echoctl -echoke 115200

Now, you can apply the echo and cat command to /dev/ttyO2.

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 33

7.3 Network

The Ethernet features provided by our modules and boards vary (e.g.: 1 x 10/100 Mbit, 2 x
10/100 Mbit, gigabit or both).

However, all interfaces offer a standard Linux network port which can be programmed
using the BSD socket interface.

The whole network configuration is handled by the systemd-networkd daemon. The relevant
configuration files can be found on the target in /lib/systemd/network/ and also in the BSP
in meta-yogurt/recipes-core/systemd/systemd/.

IP addresses can be configured within *.network files. The default IP addresses and
netmasks for eth0 and eth1 are :
eth0: 192.168.3.11/24
eth1: 192.168.4.11/24

In our configuration both interfaces are handled with separate MAC addresses. Thus, both
interfaces have to be connected to different subnets. A different configuration, like switch
mode is also possible.

The DT Ethernet setup is mostly split into two files, the module DT and the board specific
DT.

Example: RDK phyCORE- AM335x

Module DT, am335x-phycore-som.dtsi :
/* Ethernet */
&am33xx_pinmux {
 ethernet0_pins: pinmux_ethernet0 {
 pinctrl-single,pins = <
 0x10c (PIN_INPUT_PULLDOWN | MUX_MODE1)

/* mii1_crs.rmii1_crs_dv */
 0x110 (PIN_INPUT_PULLDOWN | MUX_MODE1)

/* mii1_rxerr.rmii1_rxerr */
 0x114 (PIN_OUTPUT | MUX_MODE1)

/* mii1_txen.rmii1_txen */
 0x124 (PIN_OUTPUT | MUX_MODE1)

/* mii1_txd1.rmii1_txd1 */
 0x128 (PIN_OUTPUT | MUX_MODE1)

/* mii1_txd0.rmii1_txd0 */
 0x13c (PIN_INPUT_PULLDOWN | MUX_MODE1)

/* mii1_rxd1.rmii1_rxd1 */

Yocto AM335x BSP Manual

34  PHYTEC Messtechnik GmbH 2017 L-818e_3

0x140 (PIN_INPUT_PULLDOWN | MUX_MODE1)

/* mii1_rxd0.rmii1_rxd0 */
 0x144 (PIN_INPUT_PULLDOWN | MUX_MODE0)

/* rmii1_refclk.rmii1_refclk */
 >;
 };

 mdio_pins: pinmux_mdio {
 pinctrl-single,pins = <

/* MDIO */
 0x148 (PIN_INPUT_PULLUP | SLEWCTRL_FAST |

MUX_MODE0) /* mdio_data.mdio_data */
 0x14c (PIN_OUTPUT_PULLUP | MUX_MODE0)

/* mdio_clk.mdio_clk */
 >;
 };
};

&cpsw_emac0 {
 phy_id = <&davinci_mdio>, <0>;
 phy-mode = "rmii";
 dual_emac_res_vlan = <1>;
};

&davinci_mdio {
 pinctrl-names = "default";
 pinctrl-0 = <&mdio_pins>;
 status = "okay";
};

&mac {
 slaves = <1>;
 pinctrl-names = "default";
 pinctrl-0 = <ðernet0_pins>;
 status = "okay";
};

&phy_sel {
 rmii-clock-ext;
};

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 35

Board specific DT, am335x-pcm-953.dtsi :
/* Ethernet */
&am33xx_pinmux {
 ethernet1_pins: pinmux_ethernet1 {
 pinctrl-single,pins = <
 0x40 (PIN_OUTPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a0.rgmii2_tctl */
 0x44 (PIN_INPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a1.rgmii2_rctl */
 0x48 (PIN_OUTPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a2.rgmii2_td3 */
 0x4c (PIN_OUTPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a3.rgmii2_td2 */
 0x50 (PIN_OUTPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a4.rgmii2_td1 */
 0x54 (PIN_OUTPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a5.rgmii2_td0 */
 0x58 (PIN_OUTPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a6.rgmii2_tclk */
 0x5c (PIN_INPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a7.rgmii2_rclk */
 0x60 (PIN_INPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a8.rgmii2_rd3 */
 0x64 (PIN_INPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a9.rgmii2_rd2 */
 0x68 (PIN_INPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a10.rgmii2_rd1 */
 0x6c (PIN_INPUT_PULLDOWN | MUX_MODE2)

/* gpmc_a11.rgmii2_rd0 */
 >;
 };
};

&cpsw_emac1 {
 phy_id = <&davinci_mdio>, <2>;
 phy-mode = "rgmii";
 dual_emac_res_vlan = <2>;

 /* Register 260 (104h) – RGMII Clock and Control Pad Skew */
 rxc-skew-ps = <1400>;
 rxdv-skew-ps = <0>;
 txc-skew-ps = <1400>;
 txen-skew-ps = <0>;

 /* Register 261 (105h) – RGMII RX Data Pad Skew */
 rxd3-skew-ps = <0>;
 rxd2-skew-ps = <0>;
 rxd1-skew-ps = <0>;
 rxd0-skew-ps = <0>;

Yocto AM335x BSP Manual

36  PHYTEC Messtechnik GmbH 2017 L-818e_3

 /* Register 262 (106h) – RGMII TX Data Pad Skew */
 txd3-skew-ps = <0>;
 txd2-skew-ps = <0>;
 txd1-skew-ps = <0>;
 txd0-skew-ps = <0>;

 status = "okay";
};

&mac {
 slaves = <2>;
 pinctrl-names = "default";
 pinctrl-0 = <ðernet0_pins ðernet1_pins>;
 dual_emac;
};

7.4 CAN Bus

The phyCORE-AM335x provides a Controller Area Network (CAN) interface, which is
supported by drivers using the proposed Linux standard CAN framework SocketCAN. Using
this framework, CAN interfaces can be programmed with the BSD socket API.

The CAN bus offers a low-bandwidth, prioritized message fieldbus for serial communication
between microcontrollers. Unfortunately, CAN was not designed with the ISO/OSI layer
model in mind, so most CAN APIs available throughout the industry do not support a clean
separation between the different logical protocol layers, as for example known from
Ethernet.

The SocketCAN framework for Linux extends the BSD socket API concept towards CAN bus.
Because of that, using this framework, the CAN interfaces can be programmed with the BSD
socket API and behaves like an ordinary Linux network device, with some additional
features special to CAN.

 E.g., use:

target$ ifconfig -a

to see if the interface is up or down, but the given MAC and IP addresses are arbitrary
and obsolete.

 To get the information on can0 (which represents AM335x’s CAN1) such as bit rate and

error counters type:
target$ ifconfig can0

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 37

The information for can0 will look like the following:
ifconfig can0
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
 UP RUNNING NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Interrupt:71

The output contains a standard set of parameters also shown for Ethernet interfaces, so
not all of these are necessarily relevant for CAN (for example the MAC address). The
following output parameters contain useful information:

Field Description

can0 Interface Name

NOARP CAN cannot use ARP protocol

MTU Maximum Transfer Unit

RX packets Number of Received Packets

TX packets Number of Transmitted Packets

RX bytes Number of Received Bytes

TX bytes Number of Transmitted Bytes

errors... Bus Error Statistics

The CAN configuration is done in the systemd configuration file
/lib/systemd/systemd-machine-units/can0.service.

For a persistent change of e.g. the default bitrates change the configuration in the BSP
under meta-yogurt/recipes-core/systemd/systemd/can0.service. For temporarily
modifications change the systemd file in the root filesystem instead and rebuild the root
filesystem.

Yocto AM335x BSP Manual

38  PHYTEC Messtechnik GmbH 2017 L-818e_3

[Unit]
Description=can0 interface setup

[Service]
Type=simple
RemainAfterExit=yes
ExecStart=/sbin/ip link set can0 up type can bitrate 500000
ExecStop=/sbin/ip link set can0 down

[Install]
WantedBy=basic.target

The can0.service is started after boot by default. You can start and stop it with:
target$ systemctl stop can0.service
target$ systemctl start can0.service

You can send messages with cansend or receive messages with candump:
target$ cansend can0 123#45.67
target$ candump can0

See cansend --help and candump --help messages for further information on options
and usage.

To generate random CAN traffic for testing purpose use cangen:
target$ cangen

The corresponding kernel part can be found within the board specific DT, e.g.
am335x-pcm-953.dtsi
/* CAN */
&am33xx_pinmux {
 dcan1_pins: pinmux_dcan1 {
 pinctrl-single,pins = <
 0x180 (PIN_OUTPUT_PULLUP | MUX_MODE2)

/* uart1_rxd.dcan1_tx_mux2 */
 0x184 (PIN_INPUT_PULLUP | MUX_MODE2)

/* uart1_txd.dcan1_rx_mux2 */
 >;
 };
};

&dcan1 {
 pinctrl-names = "default";
 pinctrl-0 = <&dcan1_pins>;
};

 Accessing Peripherals

7.5 MMC/SD Card

All AM335x kits support a slot for Secure Digital Cards and Multi Media Cards to be used as
general purpose block devices. These devices can be used in the same way as any other
block device.

This kind of devices are hot pluggable, nevertheless you must pay attention
not to unplug the device while it is still mounted. This may result in data
loss.

After inserting an MMC/SD card, the kernel will generate new device nodes in /dev. The full
device can be reached via its /dev/mmcblk0 device node, MMC/SD card partitions will show
up in the following way:
/dev/mmcblk0p<Y>

<Y> counts as the partition number starting from 1 to the max. count of partitions on this
device.

The partitions can be formatted with any kind of file system and also handled in a standard
manner, e.g. the mount and umount command work as expected.

• These partition device nodes will only be available if the card contains
a valid partition table (”hard disk” like handling). If it does not contain
one, the whole device can be used as a file system (”floppy” like
handling). In this case /dev/mmcblk0 must be used for formatting and
mounting.

• The cards are always mounted as being writable.

 PHYTEC Messtechnik GmbH 2017 L-818e_3 39

Yocto AM335x BSP Manual

40  PHYTEC Messtechnik GmbH 2017 L-818e_3

DT configuration for the MMC/SD interface:
/* MMC */
&am33xx_pinmux {
 mmc1_pins: pinmux_mmc1_pins {
 pinctrl-single,pins = <
 0x0F0 (PIN_INPUT_PULLUP | MUX_MODE0)

/* mmc0_dat3.mmc0_dat3 */
 0x0F4 (PIN_INPUT_PULLUP | MUX_MODE0)

/* mmc0_dat2.mmc0_dat2 */
 0x0F8 (PIN_INPUT_PULLUP | MUX_MODE0)

/* mmc0_dat1.mmc0_dat1 */
 0x0FC (PIN_INPUT_PULLUP | MUX_MODE0)

/* mmc0_dat0.mmc0_dat0 */
 0x100 (PIN_INPUT_PULLUP | MUX_MODE0)

/* mmc0_clk.mmc0_clk */
 0x104 (PIN_INPUT_PULLUP | MUX_MODE0)

/* mmc0_cmd.mmc0_cmd */
 0x160 (PIN_INPUT_PULLUP | MUX_MODE7)

/* spi0_cs1.mmc0_sdcd */
 >;
 };
};

&mmc1 {
 vmmc-supply = <&vcc3v3>;
 bus-width = <4>;
 pinctrl-names = "default";
 pinctrl-0 = <&mmc1_pins>;
 cd-gpios = <&gpio0 6 GPIO_ACTIVE_HIGH>;
 status = "okay";
};

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 41

7.6 NAND Flash

Phytec AM335x modules are equipped with raw NAND memory, which is used as media for
storing Linux, DTB and root filesystem, including applications and their data files.

The NAND Flash is connected to the GPMC interface of the AM335x. The NAND Flash type
and size is automatically being detected via the Open NAND Flash Interface (ONFI) during
boot.

This type of media is managed by the UBI file system. This file system uses compression
and decompression on the fly to increase the quantity of data stored.

From Linux user space the NAND Flash partitions start with /dev/mtdblock5. Only the
/dev/mtdblock13 on the Phytec modules has a file system, meaning that the other
partitions cannot be mounted to the root filesystem. The only way to access them is by
flashing a prepared flash image into the corresponding /dev/mtd device node.

The partitions of a NAND Flash are defined in all DTs, but the barebox bootloader overwrites
only the partitions of the kernel device tree. Thus, changing the partitions has to be done
either in the barebox DT, or in the barebox environment. How to modify the partitions
during runtime in the barebox environment is described in section 8.1 "Changing MTD
Partitions".

Adding new partitions can be done with creating a new partition node in the Module.dtsi.
The property label defines the name of the partition and the reg value the offset and size of
a partition. Do not forget to update all following partitions when adding a partition, or
changing a partition's size.

The kernel image and device tree are stored in the first 9 MB of the root partition (section
5.2.1 "Updating NAND Flash from SD Card")

The partitions are defined in the DT, e.g. am335x-phytec-phycore-som.dtsi in the barebox:
&nandflash {
 partition@0 {
 label = "xload";
 reg = <0x0 0x20000>;
 };
 partition@20000 {
 label = "xload_backup1";
 reg = <0x20000 0x20000>;
 };
 partition@40000 {
 label = "xload_backup2";
 reg = <0x40000 0x20000>;
 };
 partition@60000 {

Yocto AM335x BSP Manual

42  PHYTEC Messtechnik GmbH 2017 L-818e_3

 label = "xload_backup3";
 reg = <0x60000 0x20000>;
 };
 partition@80000 {
 label = "barebox";
 reg = <0x80000 0x80000>;
 };
 partition@100000 {
 label = "barebox_backup";
 reg = <0x100000 0x80000>;
 };
 partition@180000 {
 label = "bareboxenv";
 reg = <0x180000 0x40000>;
 };
 partition@1C0000 {
 label = "root";
 /*
 * setting size to 0x0 here, size will be extended to
 * end of nand flash while booting.
 */
 reg = < 1C0000 0x0>;
 };
};

We also kept the partition nodes in the Linux Kernel DT as fallback.

 Accessing Peripherals

7.7 GPIOs

Phytec boards have often a set of pins specially dedicated as user I/Os. Those pins are
connected directly to AM335x pins. The processor has organized its GPIOs into four banks
(GPIO0 – GPIO3) of 32 GPIOs each. Pins connected directly to the AM335x are muxed as
GPIOs and are directly usable in Linux user space. gpiochip0, gpiochip32, gpiochip64 and
gpiochip96 are the sysfs representation of these internal AM335x GPIO banks GPIO0 –
GPIO3.

The GPIOs are identified as GPIO<X>_<Y> (e.g. GPIO3_7). <X> identifies the GPIO bank and
counts from 0 to 3, while <Y> stands for the GPIO within the bank. <Y> is being counted
from 0 to 31 (32 GPIOs on each bank).

By contrast, the Linux kernel uses a single integer to enumerate all available GPIOs in the
system. The formula to calculate the right number is

Linux GPIO number <N> = <X> * 32 + <Y>

Accessing GPIOs from user space will be done using the sysfs path /sys/class/gpio/.

 First you have to register the GPIO that you want to use by writing its numbers into the

file export, e.g.:
target$ echo <N> > /sys/class/gpio/export

This will create a new subdirectory gpio<N> (for GPIO<X>_<Y> of the controller). The two
files direction and value in the new subdirectory allow to control the GPIO.

 For example, to use the newly created GPIO <N> as input execute the following

commands:
target$ echo in > /sys/class/gpio/gpio<N>/direction
target$ cat /sys/class/gpio/gpio<N>/value

Some of the user IOs are used for special internal functions on the carrier
boards (e.g. GPIO1_8 and GPIO1_9 on the PCM-953 CB). Before using a
user IO refer to the schematic, or the hardware manual of your board to
ensure that it is not already in use. Otherwise please do not touch them to
avoid malfunctioning of the CB.

 PHYTEC Messtechnik GmbH 2017 L-818e_3 43

Yocto AM335x BSP Manual

44  PHYTEC Messtechnik GmbH 2017 L-818e_3

7.7.1 Keys

With gpio-keys the Linux kernel can interpret GPIO signals as virtual keyboard events. Some
carrier boards have buttons, which can be used with the gpio-keys driver. By pushing a
button an interrupt is triggered which causes the system to handle the corresponding
keyboard event.

 To display the key events in ASCII format use evtest, e.g.:

target$ evtest /dev/input/event0

 With the cat command the raw output can be printed, e.g.:

target$ cat /dev/input/event0

GPIO-Keys configuration in am335x-pcm-953.dtsi:
/* Misc */
&am33xx_pinmux {
 pinctrl-names = "default";
 pinctrl-0 = <&cb_gpio_pins>,

 cb_gpio_pins: pinmux_cb_gpio {
 pinctrl-single,pins = <
 0x168 (PIN_OUTPUT_PULLDOWN | MUX_MODE7)

/* uart0_ctsn.gpio1_8 */
 0x16C (PIN_OUTPUT_PULLDOWN | MUX_MODE7)

/* uart0_rtsn.gpio1_9 */
 >;
 };
};

/* User IO */

&am33xx_pinmux {
 user_buttons_pins: pinmux_user_buttons {
 pinctrl-single,pins = <
 0x1E4 (PIN_INPUT_PULLUP | MUX_MODE7)

/* emu0.gpio3_7 */
 0x1E8 (PIN_INPUT_PULLUP | MUX_MODE7)

/* emu1.gpio3_8 */
 >;
 };
};

&user_buttons {
 pinctrl-names = "default";
 pinctrl-0 = <&user_buttons_pins>;
 #address-cells = <1>;
 #size-cells = <0>;

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 45

 button@0 {
 label = "home";
 linux,code = <KEY_HOME>;
 gpios = <&gpio3 7 GPIO_ACTIVE_HIGH>;
 gpio-key,wakeup;
 };

 button@1 {
 label = "menu";
 linux,code = <KEY_MENU>;
 gpios = <&gpio3 8 GPIO_ACTIVE_HIGH>;
 gpio-key,wakeup;
 };
};

7.7.2 LEDs

In case that LEDs are being connected to GPIOs, you have the possibility to access them by
a special LED driver interface. All LEDs will be accessible through the /sys/class/leds/
directory, where they appear with their DT label. Several attributes, such as the maximum
brightness (max_brightness), or the current brightness (brightness), which can be every
positive number less or equal to the maximum brightness, are assigned to each LED. Since
most LEDs do not support hardware brightness they will be turned on by all non-zero
brightness settings.

Here is a simple example for the PCM-953 CB:

 To get all LEDs available, type
target$ ls /sys/class/leds

which will result in:
green:user yellow:user

 To toogle the LEDs use

target$ echo 255 > /sys/class/leds/green\:user/brightness
to turn it ON, and
target$ echo 0 > /sys/class/leds/green\:user/brightness
to turn it OFF.

Yocto AM335x BSP Manual

46  PHYTEC Messtechnik GmbH 2017 L-818e_3

User I/O configuration in am335x-pcm-953.dtsi:
&am33xx_pinmux {
 user_leds_pins: pinmux_user_leds {
 pinctrl-single,pins = <
 0x80 (PIN_OUTPUT_PULLDOWN | MUX_MODE7)

/* gpmc_csn1.gpio1_30 */
 0x84 (PIN_OUTPUT_PULLDOWN | MUX_MODE7)

/* gpmc_csn2.gpio1_31 */
 >;
 };
};

&user_leds {
 pinctrl-names = "default";
 pinctrl-0 = <&user_leds_pins>;

 green {
 label = "green:user";
 gpios = <&gpio1 30 GPIO_ACTIVE_HIGH>;
 linux,default-trigger = "gpio";
 default-state = "on";
 };

 yellow {
 label = "yellow:user";
 gpios = <&gpio1 31 GPIO_ACTIVE_LOW>;
 linux,default-trigger = "gpio";
 default-state = "on";
 };
};

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 47

7.8 SPI Master

Most Phytec boards are equipped with a NOR Flash which connects to the AM335x's McSPI
interface. The NOR Flash is suitable for booting (section "Booting from SPI NOR Flash").

From Linux user space the NOR Flash partitions start with dev/mtdblock0. There are
currently five partitions: barebox, barebox-environment, oftree, MLO and kernel. Please
note that there is no root file system partition on the NOR Flash.

The partitions of an SPI Flash are defined in all DTs, but the barebox bootloader overwrites
only the partitions of the kernel device tree. Thus, changing the partitions has to be done
either in the barebox DT, or in the barebox environment. How to modify the partitions
during runtime in the barebox environment is described in section 8.1 "Changing MTD
Partitions".

Adding new partitions can be done with creating a new partition node in the Module.dts.
The property label defines the name of the partition and the reg value the offset and size of
a partition. Do not forget to update all following partitions when adding a partition, or
changing a partition's size.

The serial_flash node is defined inside of the SPI master node in the module DTs. The SPI
node contains all devices connected to this SPI bus which is in this case only the SPI NOR
Flash.

Definition of the SPI master node, e.g. in am335x-phycore-som.dtsi:
/* SPI Busses */
&am33xx_pinmux {
 spi0_pins: pinmux_spi0 {
 pinctrl-single,pins = <
 0x150 (PIN_INPUT_PULLDOWN | MUX_MODE0)

/* spi0_clk.spi0_clk */
 0x154 (PIN_INPUT_PULLDOWN | MUX_MODE0)

/* spi0_d0.spi0_d0 */
 0x158 (PIN_INPUT_PULLUP | MUX_MODE0)

/* spi0_d1.spi0_d1 */
 0x15c (PIN_INPUT_PULLUP | MUX_MODE0)

/* spi0_cs0.spi0_cs0 */
 >;
 };
};

&spi0 {
 pinctrl-names = "default";
 pinctrl-0 = <&spi0_pins>;
 status = "okay";

Yocto AM335x BSP Manual

48  PHYTEC Messtechnik GmbH 2017 L-818e_3

 serial_flash: m25p80@0 {
 compatible = "jedec,spi-nor";
 spi-max-frequency = <48000000>;
 reg = <0x0>;
 m25p,fast-read;
 #address-cells = <1>;
 #size-cells = <1>;

 partition@0 {
 label = "xload";
 reg = <0x0 0x20000>;
 };

 partition@1 {
 label = "barebox";
 reg = <0x20000 0x80000>;
 };

 partition@2 {
 label = "bareboxenv";
 reg = <0xa0000 0x20000>;
 };

 partition@3 {
 label = "oftree";
 reg = <0xc0000 0x20000>;
 };

 partition@4 {
 label = "kernel";
 reg = <0xe0000 0x0>;
 };
 };
};

The am335x-phycore-som.dtsi also includes an example for an spidev device. This node has
been enabled in the phyBOARD-Wega RDK. spidev allows to access an SPI device directly
from user space.
spidev0: spi@0 {
 compatible = "spidev";
 reg = <0x0>;
 spi-max-frequency = <48000000>;
 status = "disabled";
};

The partition layout is also available in the kernel as fallback.

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 49

7.9 I²C Bus

The AM335x contains three multimaster fast-mode I2C modules called I2C0, I2C1, and
I2C2. Phytec boards provide plenty of different I2C devices connected to the three I2C
modules of the AM335x. This chapter will describe the basic device usage and its DT
representation of some of the I2C devices integrated on our RDK boards.

General I2C bus configuration (e.g. am335x-phycore-som.dtsi):
/* I2C Busses */
&am33xx_pinmux {
 i2c0_pins: pinmux_i2c0 {
 pinctrl-single,pins = <
 0x188 (PIN_INPUT_PULLUP | MUX_MODE0) /*
i2c0_sda.i2c0_sda */
 0x18c (PIN_INPUT_PULLUP | MUX_MODE0) /*
i2c0_scl.i2c0_scl */
 >;
 };
};

&i2c0 {
 pinctrl-names = "default";
 pinctrl-0 = <&i2c0_pins>;
 clock-frequency = <400000>;
 status = "okay";
 /* ... */
};

7.9.1 EEPROM

It is possible to read and write to the device directly in /sys/class/i2c-adapter/i2c-0/0-
0052/eeprom.

 E.g. to read and print the first 1024 bytes of the EEPROM as hex number, execute:

target$ dd if=/sys/class/i2c-adapter/i2c-0/0-0052/eeprom bs=1
count=1024 | od -x

 E.g. to fill the whole EEPROM with zeros use:

target$ dd if=/dev/zero of=/sys/class/i2c-adapter/i2c-0/0-0052/eeprom
bs=4096 count=1

This operation takes some time, because the EEPROM is relatively slow.

Yocto AM335x BSP Manual

DT representation, e.g. in am335x-phycore-som.dtsi:
&i2c0 {
 i2c_eeprom: eeprom@52 {
 compatible = "atmel,24c32";
 pagesize = <32>;
 reg = <0x52>;
 status = "disabled";
 };
};

7.9.2 RTC

RTCs can be accessed via /dev/rtc*. Because Phytec boards have often more than one RTC,
there might be more than one RTC device file.

 To find out the name of the RTC device you can read its sysfs entry with:

target$ cat /sys/class/rtc/rtc*/name

You will get for example:

rv4162c7
44e3e000.rtc

This will list all RTCs including the non-I2C RTCs. Linux assigns RTC devices
IDs based on the device tree /aliases entries if present.

am335x-phycore-som.dtsi:
aliases {
 rtc0 = &i2c_rtc;
 rtc1 = &da830rtc;
};

As the time is set according to the value of rtc0 during system boot rtc0 should be always
the RTC that is being backed up.

Date and time can be manipulated with the hwclock tool, using the -w (systohc) and -s
(hctosys) options.

To set the date first use date and then run hwclock -w -u to store the new date into the RTC.
For more information about this tool refer to the manpage of hwclock.

In case you want to use the interrupt of the RV-4162-C7 RTC while
working with the PCM-953 CB, jumper JP23 on the CB must be closed.
Remember that the interrupt can only be applied to the RTC if it is not
already in use for the LCD-018 touch.

50  PHYTEC Messtechnik GmbH 2017 L-818e_3

 Accessing Peripherals

DT representation for I2C RTCs, e.g. in am335x-phycore-som.dtsi:

&i2c0 {

 i2c_rtc: rtc@68 {
 compatible = "mc,rv4162c7";
 reg = <0x68>;
 status = "disabled";
 };
};

7.9.3 Capacitive Touchscreen

The capacitive touchscreen is a part of the display module.

 For a simple test of this feature start our demo application with:

target$ QtDemo

This application also includes a Multitouch Demo.

 To start another more simple test application type:

target$ qt5-opengles2-test

 To test the basic input handling of the touchscreen use evtest after selecting an input

device:
target$ evtest

The raw touch input events will be displayed.

As the touchscreen is part of the display the touchscreen DT entry is required for example
for the LCD-018 module. For the LCD-018 module, our DT model expects an i2c_ts node.
Please see am335x-phytec-lcd.dtsi.

The display DT representation for all displays and touchscreens
implemented so far, are summarized in am335x-phytec-lcd.dtsi.

 PHYTEC Messtechnik GmbH 2017 L-818e_3 51

Yocto AM335x BSP Manual

52  PHYTEC Messtechnik GmbH 2017 L-818e_3

DT representation, e.g. am335x-pcm-953.dtsi:
/* Defined in am335x-pcm-953.dtsi, board specific part */
&am33xx_pinmux {
 ts_irq_pin: pinmux_ts_irq_pin {
 pinctrl-single,pins = <
 0x1B4 (PIN_INPUT_PULLUP | MUX_MODE7)

/* xdma_event_intr1.gpio0_20 */
 >;
 };
};

&i2c0 {
 i2c_ts: touchscreen@38 {
 compatible = "edt,edt-ft5x06";
 reg = <0x38>;
 pinctrl-names = "default";
 pinctrl-0 = <&ts_irq_pin>;
 interrupt-parent = <&gpio0>;
 interrupts = <20 0>;
 status = "disabled";
 };
};

7.9.4 Temperature Sensor

The phyCORE-AM335x-R2 has a TMP102 temperature sensor optionally mounted on the
module. The temperature can be read out of the sensor over the sysfs.

 Type

target$ cat /sys/class/hwmon/hwmon0/temp1_input

to get the temperature in millicelsius.

DT representation, e.g. am335x-phycore-som.dtsi:
&i2c0 {
 i2c_tmp102: temp@4b {
 compatible = "ti,tmp102";
 reg = <0x4b>;
 status = "disabled";
 };
};

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 53

7.10 USB Host Controller

The USB controller of the AM335x SoC provides a low-cost connectivity solution for
numerous consumer portable devices by providing a mechanism for data transfer between
USB devices with a line/bus speed up to 480 Mbps. The USB subsystem has two
independent USB 2.0 modules built around two Mentor USB OTG controllers (musbmhdrc).

The unified BSP includes support for mass storage devices and keyboards. Other USB
related device drivers must be enabled in the kernel configuration on demand.

Due to udev, all mass storage devices connected get unique IDs and can be found in
/dev/disks/by-id. These IDs can be used in /etc/fstab to mount the different USB memory
devices in different ways.

User USB1 (host) configuration in am335x-pcm-953.dtsi:
/* USB */
&am33xx_pinmux {
 usb_pins: pinmux_usb_pins {
 pinctrl-single,pins = <
 0x21c (PIN_OUTPUT_PULLDOWN | MUX_MODE0) /*
usb0_drvvbus.usb0_drvvbus */
 0x234 (PIN_OUTPUT_PULLDOWN | MUX_MODE0) /*
usb1_drvvbus.usb1_drvvbus */
 >;
 };
};

&cppi41dma {
 status = "okay";
};

&ctrl_mod {
 status = "okay";
};

&usb {
 pinctrl-names = "default";
 pinctrl-0 = <&usb_pins>;
 status = "okay";
};

&usb1 {
 status = "okay";
 dr_mode = "host";
};

&usb1_phy {
 status = "okay";
};

Yocto AM335x BSP Manual

54  PHYTEC Messtechnik GmbH 2017 L-818e_3

7.11 USB OTG

Most Phytec boards provide an USB OTG interface. USB OTG ports can act as USB device, or
USB host. The mode depends on the USB hardware attached to the USB OTG port. If, for
example, an USB mass storage device is attached to the USB OTG port, the device may show
up as /dev/sda. To automatically switch between modes a USB gaget driver has to be
loaded. If only USB OTG in host mode is needed, the module g_zero may be used.

7.11.1 USB Device

In order to connect the board as USB device to an USB host port (for example a PC), you
need to configure the appropriate USB gadget. With USB configfs you can define the
parameters and functions of the USB gadget. The BSP includes USB configfs support as
kernel module.

 Type

target$ modprobe libcomposite

to load the module.

Example:
 First define the parameters such as the USB vendor and product IDs, and set the

information strings for the english (0x409) language:
target$ cd /sys/kernel/config/usb_gadget/
target$ mkdir g1
target$ cd g1/
target$ echo "0x1d6b" > idVendor
target$ echo "0x0104" > idProduct
target$ mkdir strings/0x409
target$ echo "0123456789" > strings/0x409/serialnumber
target$ echo "Foo Inc." > strings/0x409/manufacturer
target$ echo "Bar Gadget" > strings/0x409/product

 Next create a file for the mass storage gadget:

target$ dd if=/dev/zero of=/tmp/file.img bs=1M count=64

 Now you should create the functions you want to use:

target$ cd /sys/kernel/config/usb_gadget/g1
target$ mkdir functions/acm.GS0
target$ mkdir functions/ecm.usb0
target$ mkdir functions/mass_storage.0
target$ echo /tmp/file.img > functions/mass_storage.0/lun.0/file

- acm: Serial gadget, creates a serial interface like /dev/ttyGS0.
- ecm: Ethernet gadget, creates an Ethernet interface, e.g. usb0
- mass_storage: The host can partition, format and mount the gadget mass storage the

same way as any other USB mass storage.

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 55

 Bind the defined functions to a configuration with:
target$ cd /sys/kernel/config/usb_gadget/g1

target$ mkdir configs/c.1

target$ mkdir configs/c.1/strings/0x409

target$ echo "CDC ACM+ECM+MS" > configs/c.1/strings/0x409/configuration

target$ ln -s functions/acm.GS0 configs/c.1/

target$ ln -s functions/ecm.usb0 configs/c.1/

target$ ln -s functions/mass_storage.0 configs/c.1/

 Finally start the USB gadget with the following commands:

target$ cd /sys/kernel/config/usb_gadget/g1

target$ ls /sys/class/udc/

musb-hdrc.0.auto

 Now use the output from the previous command:
target$ echo "musb-hdrc.0.auto" >UDC

If your system has more than one USB Device or OTG port, you can pass the correct one to
the USB Device Controller (UDC).

 To stop the USB gadget and unbind the used functions execute:

target$ echo "" > /sys/kernel/config/usb_gadget/g1/UDC

User USB0 (OTG) configuration in am335x-pcm-953.dtsi:
&usb0 {
 status = "okay";
};

&usb0_phy {
 status = "okay";
};

Yocto AM335x BSP Manual

7.12 Audio

On Phytec products you will find different audio chips. This chapter should be applicable to
most audio chips without modification.

Audio support on Phytec AM335x boards is done via the I2S interface and controlled via I2C.

The I2S port does not always strictly follow the I2S specification, but can
use other clock and bit alignments. However, the common ground is the
synchronous serial transmission.

 To check if your soundcard driver is loaded correctly and what the device is called type:

target$ aplay -lL

 Use scp to copy a wav file to the board and play it through the sound interface with:

target$ aplay -vv file.wav

Not all wave formats are supported by the sound interface. Use Audacity on your host to
convert any file into 44100:S16_LE wave format which should be supported on all
platforms.

 Run speaker-test to identify channel numbers:

target$ speaker-test -c 2 -t wav

 An external audio source can be connected to the input, in order to record a sound file

which can then be played back:
target$ arecord -c 2 -r 441000 -f S16_LE test.wav
target$ aplay test.wav

 To inspect your soundcards capabilities call

target$ alsamixer

You should see a lot of options as the audio-ICs have many features you can play with. It
might be better to open alsamixer via ssh instead of the serial console, as the console
graphical effects could be better. You have either mono or stereo gain controls for all mix
points. "MM" means the feature is muted, which can be toggled by hitting m.

56  PHYTEC Messtechnik GmbH 2017 L-818e_3

For more advanced audio usage, you need to have an audio server. This is required e.g. if
you want to playback from different applications at the same time, e.g. you a have a
notification app which makes a beep every now and then, plus you have a browser running
which should be able to play sounds embedded in websites. The notification app has no
possibility to open the sound device as long as the browser is running. The notifications
will be suppressed. The standard sound server of Linux is pulseaudio. It is not installed per
default at the moment, though.

 Accessing Peripherals

7.12.1 Audio Sources and Sinks

Enabling and disabling input and output channels can be done with the alsamixer program.
F3 selects Screen Playback and F4 Screen Capture. With the Tabulator key you can switch
between these screens. To enable, or disable switchable controls press m (mute).

 Figure 3: Screenshot of alsamixer

With the keys cursor left and cursor right you can step through the different channels.
There are much more channels than fit onto one screen, so they will scroll if your cursor
reaches the right or left edge of it. In case you get trouble in the display during scrolling,
please use ssh instead of microcom.

alsamixer can be left by pressing the ESC key. The settings are saved automatically on
shutdown and restored on boot by the systemd service alsa-restore. If you want to save the
mixer settings manually you can execute alsactl store. The settings are saved in
/var/lib/alsa/asound.state.

 PHYTEC Messtechnik GmbH 2017 L-818e_3 57

Yocto AM335x BSP Manual

7.12.2 Playback

To playback simple audio streams, you can use aplay. For example:
target$ aplay /usr/share/sounds/alsa/Front_Center.wav

The file formats .ogg, and .flac can be played back using ogg123. MP3 playback is currently
not supported per default, because of licensing issues. If you are going to deliver a product
including .mp3 files, please check the royalty fees.

7.12.3 Capture

arecord is a command line tool for capturing audio streams which uses Line In as default
input source.

To select a different audio source you can use alsamixer. For example, switch on Right PGA
Mixer Mic3R and Left PGA Mixer Mic3L in order to capture the audio from the microphone
input.

It is a known error that you need to choose Playback screen (F3) instead of
Capture screen (F4) for accessing these two controls.

The following example will capture the current stereo input source with a sample rate of
48000 Hz and will create an audio file in WAV format (signed 16 bit per channel, 32 bit per
sample):
target$ arecord -t wav -c 2 -r 48000 -f S16_LE test.wav

Capturing can be stopped again using CTRL-C.

7.12.4 Texas Instruments TLV320AIC3007 (phyBOARD-Wega)

The TI chip has a lot of mixing features as you will notice when opening alsamixer. To get
an idea of the possibilities, refer to the datasheet from TI. One important feature is the
analog mixing capability. You can route input channels to output channels either active, or
passive without transferring data back and forth to the SoC. This is usually known as zero
latency monitoring in terms of PC Audio cards. To control this feature open alsamixer and
go to Playback section (F3). There will be one group of selectors for each output channel,
e.g. Right Line Mixer. For most of the input paths you can select between "passive
through", or you can activate a programmable gain signal path. To route the line input to
the line output activate both Right Line Mixer PGAR Bypass and Left Line Mixer PGAL Bypass.
You should now hear the input signal at the line out.

58  PHYTEC Messtechnik GmbH 2017 L-818e_3

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 59

As an example application we can route the audio stream through the whole system. First,
we deactivate the direct loop from line in to line out in alsamixer and activate the ADC for
the analog input mixer and the DAC for the analog output mixer. We can now close the
signal path in the user space by using a pipe and the ALSA tools:
target$ arecord -c 2 -r 44100 -f S16_LE | aplay

We created the following audio routing path:
analog in -> ADC -> AM335x -> kernel -> (userspace -> kernel ->)1 DAC -> analog out

You should now hear the input signal at the line output again. But this time, the routing
through the entire system added a latency of 750 ms to the signal. The line mixer on the
other side will add about 4 μs delay.

This pipe routing is a crude example of how to use audio. If you need good audio
performance you should use an audio server. There are two prominent choices available,
pulseaudio and jack.

As a third option you can route the audio from line in to the internal ADC. But instead of
taking the signal path through the complete system, you can directly use the internal
digital mixer of the TLV to route the signal back to the DAC and then to the output analog
mixer and line out. This signal path is record only. So you do not have the option of full
duplex playback in this mode, but you can use all the available DSP features of the TLV, the
automatic gain, the high-pass filter, EQ and de-emphasis filters for the record path. To
activate this mode you have to use the TI Windows tool to look up the specific I2C
commands. The software can be found on the TI webpage and is called TLV320AIC3107EVM-
K - GUI Software. The 3107 is register compatible in all available features to the 3007. The
software is used for both chips.

7.12.5 Wolfson WM8974 (phyCORE-AM335x Carrier Board - PCM-953)

The WM8974 is a low power mono codec with a speaker out. The codec has an internal PLL,
so different clocking modes can be support. On the PCM-953 we achieved the best values
for the Total Harmonic Distortion (THD) with an external quartz (OZ1 on the PCM-953) and
the WM8974 used in I2S and master mode. The BSP is per default configured this way.
Hence, if the codec is not working first ensure that jumper JP6 is closed at 1+2 to enable
the external quartz.

The microphone input is configured in single ended mode. Test Pad TP1 can be used when
connecting a balanced microphone. MONO_OUT is the line out mono signal. HEADPHONES
is a stereo out jack with ground on the sleeve and the differential mono signal connected
to the tip (positive power out) and the ring of the jack (negative power out). Hence, an
adapter is required in order to attach a stereo headphone to the jack. The adapter must
connect the ring of the boards jack (negative power out) to the ground of the headphone

1: twice for the pipe

Yocto AM335x BSP Manual

and the tip of the jack (positive power out) to both, left and right signal input of the stereo
headphone.

7.13 Framebuffer

This driver gains access to displays connected to Phytec carrier boards via device node
/dev/fb0.

 To run a simple test of the framebuffer feature execute:
target$ fbtest

This will show various pictures on the display.

 Information about the framebuffer's resolution can be obtained with

target$ fbset

which will return:
mode "800x480-0"
 # D: 0.000 MHz, H: 0.000 kHz, V: 0.000 Hz
 geometry 800 480 800 480 32
 timings 0 0 0 0 0 0 0
 accel true
 rgba 8/16,8/8,8/0,0/0
endmode

fbset cannot be used to change display resolution or color depth.
Depending on the framebuffer device different kernel commands are
mostly needed to do this. Some documentation can be found in the kernel
documentation at
https://www.kernel.org/doc/Documentation/fb/modedb.txt.
Please also refer to the manual of your display driver for more details.

 To query the color depth of the framebuffer emulation type:

target$ cat /sys/class/graphics/fb0/bits_per_pixel

The result can be, for example:
 16

The display DT representation can be found in am335x-phytec-lcd.dtsi. We have split the
display configuration into two parts. In a generic display module am335x-phytec-lcd.dtsi,
which includes the display DT representations for all displays and touchscreens
implemented so far, and a board specific part, which can be found in all board DTs. The
am335x-phytec-lcd.dtsi file is included within the board DTs.

60  PHYTEC Messtechnik GmbH 2017 L-818e_3

https://www.kernel.org/doc/Documentation/fb/modedb.txt

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 61

Board specific part, e.g. am335x-pcm-953.dtsi
/* Display */
&am33xx_pinmux {
 ecap0_pins: pinmux_ecap0 {
 pinctrl-single,pins = <
 0x164 (PIN_OUTPUT_PULLDOWN | MUX_MODE0)

/* ecap0_in_pwm0_out.ecap0_in_pwm0_out */
 >;
 };

 ts_irq_pin: pinmux_ts_irq_pin {
 pinctrl-single,pins = <
 0x1B4 (PIN_INPUT_PULLUP | MUX_MODE7)

/* xdma_event_intr1.gpio0_20 */
 >;
 };
};

&ecap0 {
 pinctrl-names = "default";
 pinctrl-0 = <&ecap0_pins>;
 status = "disabled";
};

&i2c0 {
 i2c_ts: touchscreen@38 {
 compatible = "edt,edt-ft5x06";
 reg = <0x38>;
 pinctrl-names = "default";
 pinctrl-0 = <&ts_irq_pin>;
 interrupt-parent = <&gpio0>;
 interrupts = <20 0>;
 status = "disabled";
 };
};

&tscadc {
 status = "disabled";
 tsc {
 ti,wires = <4>;
 ti,x-plate-resistance = <200>;
 ti,coordinate-readouts = <5>;
 ti,wire-config = <0x00 0x11 0x22 0x33>;
 ti,charge-delay = <0x400>;
 };
};

#include "am335x-phytec-lcd.dtsi"

Yocto AM335x BSP Manual

7.13.1 Backlight Control

If a display is connected to the Phytec board, you can control its backlight with the Linux
kernel sysfs interface. All available backlight devices in the system can be found in the
folder /sys/class/backlight. Reading the appropriate files, and writing to them allows to
control the backlight.

 To get, for example, the maximum brightness level (max_brightness) execute

target$ cd /sys/class/backlight/backlight/
target$ cat max_brightness

which will result in:

7

The valid values for the brightness level are 0 to <max_brightness>.

 To obtain the current brightness level type
target$ cat brightness

you will get for example:

2

 Write to the file brightness to change the brightness. E.g.,

target$ echo 0 > brightness

turns the backlight off,

target$ echo 6 > brightness

sets the brightness to the second highest brightness level.

For documentation of all files see
https://www.kernel.org/doc/Documentation/ABI/stable/sysfs-class-backlight.

If dimming does not work by writing to the file brightness, check the DIP
switch settings on the bottom side of the display module (LCD-018-xxx).
The correct setting of DIP switch S1 is 1=OFF, 2=OFF, 3=ON and 4=OFF.

This note applies to phyFLEX Kits with one of the following display
modules:
LCD-018-035-KAP, LCD-018-043-KAP, LCD-018-057-KAP, and
LCD-018-070-KAP.

62  PHYTEC Messtechnik GmbH 2017 L-818e_3

https://www.kernel.org/doc/Documentation/ABI/stable/sysfs-class-backlight

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 63

7.13.2 Resistive Touchscreens

Most of the Phytec boards support connecting a resistive touchscreen which requires tslib
support in general. But tslib support is also needed for the Qt framework for use of a
resistive touchscreen, because tslib and Qt5 do not work together out of the box.

 To set the right environment when starting a Qt application, start it with our qtLauncher:

target$ qtLauncher QtDemo [optional QtDemo parameters]

The launcher will check, whether the touchscreen is calibrated or not. If not, it will
automatically start the calibration program before starting your application.

 Recalibration of the touchscreen can be done after closing the Qt application by

executing:
target$ ts_calibrate

7.14 Watchdog

The AM335x SoC includes a hardware watchdog which is able to reset the board when the
system hangs. Support for this is already partly activated in the AM335x BSP. This chapter
will explain how to enable full support based on a root filesystem using systemd. The kernel
driver expects a user space to "ping" the watchdog in regular bases. As user space setups
may handle this different, we have not activated this for the whole system.

7.14.1 Watchdog Support in the Barebox Bootloader

The watchdog is enabled when the boot command is launched. The timeout of the
watchdog is set with the persistent nv variable in boot.watchdog_timeout. The default
value is 60 s.

 If the value should be changed edit the file boot.watchdog_timeout with:

bootloader$ edit /env/nv/boot.watchdog_timeout

 Or change the variable with the nv command:
bootloader$ nv boot.watchdog_timeout=<time, e.g. 30s>

 Then save the changes with saveenv.

It is also possible to enable the watchdog manually at the barebox prompt using the wd
<timeout> command. Executing the wd command without any parameter retriggers the
watchdog. Disabling the watchdog again can be done with wd 0.

Yocto AM335x BSP Manual

7.14.2 Watchdog Support in the Linux Kernel

After the kernel has started the watchdog is disabled again when the omap_wdt driver is
loaded. This is the default behavior of the watchdog driver. To keep the watchdog enabled
after the driver has been probed, the kernel command line needs to be extended with:
omap_wdt.early_enable omap_wdt.timer_margin=60

The first parameter enables the watchdog in the kernel and the second one defines a new
timeout in seconds.

The bootargs can also be set in the barebox environment.

 To set the bootargs edit the file linux.bootargs.base:

bootloader$ edit /env/nv/linux.bootargs.base

 Then save the changes with saveenv.

The kernel driver is not able to handle a timeout and to refresh the
watchdog. This must be done in user space. Otherwise the board will reset
after the timeout runs out.

7.14.3 Watchdog Support in systemd

Systemd does include hardware watchdog support since version 183.

 To activate watchdog support the file system.conf in /etc/systemd/ has to be adapted by

enabling the options: RuntimeWatchdogSec=60s and
 ShutdownWatchdogSec=10min

RuntimeWatchdogSec defines the timeout value of the watchdog, while
ShutdownWatchdogSec defines the timeout when the system is rebooted.

For more detailed information about hardware watchdogs under systemd refer to
http://0pointer.de/blog/projects/watchdog.html

64  PHYTEC Messtechnik GmbH 2017 L-818e_3

http://0pointer.de/blog/projects/watchdog.html

 Accessing Peripherals

7.15 WLAN Modules

7.15.1 Supported Wi-Fi Modules and Software used

Currently there is only one module supported. The BSP described herein allows to run the
TiWi-BLE Bluetooth and Wi-Fi combo module in client and Access Point (AP) mode using
WEP, WPA and WPA2 encryption. More information about the module can be found at
https://www.lsr.com/embedded-wireless-modules/wifi-plus-bluetooth-module/tiwi-ble

This BSP is using the most current firmware from the linux-firmware repository.
git://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git

The following binaries are used:
wl127x-fw-5-mr.bin (multi role)
wl127x-fw-5-sr.bin (single role)
wl127x-fw-5-plt.bin (used for the calibration process)

The Linux kernel driver will select the right firmware.

We are using a self generated nvs binary file to allow the TiWi-BLE combo
module to operate in compliance with the modular certification for FCC and
ETSI. We have also set the MAC in the nvs file to 00:00:00:00:00:00. This
causes the driver to use the MAC from the BT BD address that is burned
into the wl127x chip.

The wl1271-nvs.bin can be generated by using TI's calibrator tool and our ini file in
/usr/share/wl127x-inis/tiwi-ble-fcc-etsi.ini.

Please see section 7.15.3 "Calibration" for more information.

7.15.2 Enable Wi-Fi Expansion Boards

All Wi-Fi expansion boards can be enabled by sourcing the am335x-wlan expansion file in
env/expansions/.

am335x-wlan:
of_fixup_status /fixedregulator@2
of_fixup_status /ocp/mmc@47810000
of_fixup_status /ocp/mmc@47810000/wlcore@0

This file will be sourced in env/config-expansions.

After enabling the Wi-Fi module on the expansion board and booting the kernel, you
should see an output on your console similar to the following:
cfg80211: Calling CRDA to update world regulatory domain

 PHYTEC Messtechnik GmbH 2017 L-818e_3 65

wlcore: loaded

https://www.lsr.com/embedded-wireless-modules/wifi-plus-bluetooth-module/tiwi-ble

Yocto AM335x BSP Manual

66  PHYTEC Messtechnik GmbH 2017 L-818e_3

7.15.3 Calibration

Calibration is a process of determining radio parameters for a specific chip. These
configuration parameters are suitable to the specific chip with its unique design.
Therefore, the calibration parameters are sent back to the driver to be stored in non-
volatile memory for later use. Upon initialization, the wL12xx driver loads an nvs file,
where it expects to read those calibration parameters to send them to the chip. The nvs file
includes two main parts: one stores the calibration parameters and the other stores the
initialization information required for the wL12xx driver. The calibration is described also
in http://processors.wiki.ti.com/index.php/WL12xx_NLCP_Calibration_Process and
http://linuxwireless.org/en/users/Drivers/wl12xx/calibrator/#wl12xx_Calibration.

TI provides a calibration tool which can be found in the 18xx-ti-utils repository:
git://git.ti.com/wilink8-wlan/18xx-ti-utils.git

The calibrator version used is 0.80.

 Before starting the calibration, the WiFi module has to be set to PLT mode. For this
purpose open the menuconfig in your Yocto directory:
<yocto_dir>/build$ bitbake virtual/kernel -c menuconfig

 Activate the NL80211_TESTMODE configuration:
Networking support > Wireless > nl80211 testmode command

 Press F6 to save the configurations and F9 to leave. Rebuild the kernel:
<yocto_dir>/build$ bitbake phytec-headless-image

 Flash the new BSP image to the board (section 5) and reboot the module.

 To start the calibration first generate an nvs reference file:
target$ calibrator set ref_nvs /usr/share/wl127x-inis/tiwi-ble-fcc-

etsi.ini
target$ cp new-nvs.bin /lib/firmware/ti-connectivity/wl1271-nvs.bin

 Reload the driver:
target$ ifconfig wlan0 down
target$ rmmod wlcore_sdio
target$ modprobe wlcore_sdio

 Now perform the first calibration:
target$ calibrator plt calibrate

 Copy the newly created file to the proper location:
target$ cp new-nvs.bin /lib/firmware/ti-connectivity/wl1271-nvs.bin

 Finally set the WLAN MAC address:
target$ calibrator set nvs_mac /lib/firmware/ti-connectivity/wl1271-

nvs.bin 00:00:00:00:00:00
 Restart the module to get the new MAC address:

target$ rmmod wlcore_sdio
target$ modprobe wlcore_sdio

http://processors.wiki.ti.com/index.php/WL12xx_NLCP_Calibration_Process
http://linuxwireless.org/en/users/Drivers/wl12xx/calibrator/#wl12xx_Calibration

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 67

7.16 Power Management

7.16.1 CPU Core Frequency Scaling

The CPU of the AM335x SoC is able to scale the clock frequency and the voltage. This is used
to save power when the full performance of the CPU is not needed. Scaling the frequency
and the voltage is referred to as 'Dynamic Voltage and Frequency Scaling' (DVFS).

The AM335x BSP supports the DVFS feature. The Linux kernel provides a DVFS framework
that allows each CPU core to have a min/max frequency and a governor that governs it.
Depending on the AM335x variant used several different frequencies are supported.

 Type

target$ cat
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

to get a complete list.

In case you have for example an AM3359 with a maximum of 800 MHz the result will be:
.300000 600000 720000 800000.

The voltages are scaled according to the setup of the frequencies.

You can decrease the maximum frequency (e.g. to 720000) with
target$ echo 720000 >

/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

or increase the minimum frequency (e.g. to 600000)
target$ echo 600000 >

/sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq

 To ask for the current frequency type:

target$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

So called governors are selecting one of this frequencies in accordance to their goals,
automatically.

 List all governors available with the following command:

target$ cat
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors

The result will be:
conservative userspace powersave ondemand performance

Yocto AM335x BSP Manual

68  PHYTEC Messtechnik GmbH 2017 L-818e_3

conservative is much like the ondemand governor. It differs in behavior in that it
gracefully increases and decreases the CPU speed rather than jumping to
max speed the moment there is any load on the CPU.

userspace allows the user or user space program running as root to set a specific

frequency (e.g. to 600000). Type:
 target$ echo 600000 >

/sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

powersave always selects the lowest possible CPU core frequency.

ondemand switches between possible CPU core frequencies in reference to the current

system load. When the system load increases above a specific limit it
increases the CPU core frequency immediately. This is the default governor
when the system starts up.

performance always selects the highest possible CPU core frequency.

 In order to ask for the current governor, type:

target$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

You will normally get:
ondemand.

 Switching over to another governor (e.g. userspace) is done with:

target$ echo userspace >
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

For more detailed information about the governors refer to the Linux kernel documentation
in: linux/Documentation/cpu-freq/governors.txt.

 Accessing Peripherals

 PHYTEC Messtechnik GmbH 2017 L-818e_3 69

7.16.2 Power Saving Modes

The phyCORE-AM335x-R2 supports two different Suspend-to-RAM (STR) modes, standby
and deep sleep. They switch the SoC into a power saving mode and turn off different power
domains.

7.16.2.1 Standby

This mode has the following behavioral:

• DDR in self-refresh

• CPU shutdown

• Peripheral is on

 To turn on this STR mode write standby to /sys/power/state:

echo -n standby > /sys/power/state

7.16.2.2 Deep Sleep

This mode has the following behavioral:

• DDR in self-refresh

• CPU shutdown

• Peripheral is off

 To turn on this STR mode write mem to /sys/power/state:

echo -n mem > /sys/power/state

Yocto AM335x BSP Manual

70  PHYTEC Messtechnik GmbH 2017 L-818e_3

8 Customizing the BSP

8.1 Changing MTD Partitions

For Memory Technology Devices (MTD) such as NAND Flash or SPI NOR Flash the partitions
are usually defined in the device trees, i.e. they are defined in the device tree of the MLO,
the barebox and the kernel. When changing the partition table all those parts need to be
touched. Newer barebox versions (v2015.07.0 and newer) have a mechanism to overwrite
partitions at runtime.

The barebox holds an internal list with partitions which is initialized with the partition
table out of the barebox device tree. This list is used later on to fix up the device tree of the
kernel and can be overwritten in the barebox shell, or with a script before booting the
kernel.

 To print the partitions just type:
bootloader$ echo $<mtddevice>.partitions

Example:
bootloader$ echo $nand0.partitions

can, for example, result in:

128k(xload),128k(xload_backup1),128k(xload_backup2),128k(xload_backup3),512k(bar
ebox),512k(barebox_backup),256k(bareboxenv),129280k(root)

 To overwrite the partitions just change the partitions variable:
target$ m25p0.partitions=128k(xload),512k(barebox),128k(bareboxenv),

128k(oftree),7296k(kernel)

Adding and deleting partitions by overwriting the partitions variable is possible. But do
not touch the xload, xload_backup*, barebox, barebox_backup and bareboxenv partitions.
Those should not be changed at runtime.

 Revision History

 PHYTEC Messtechnik GmbH 2017 L-818e_3 71

9 Revision History

Date Version # Changes in this manual
18.02.2016 Manual

 L-818e_1

First edition.
Describes the Phytec BSP release PD15.2.x for AM335x
products with Yocto 1.8.1

27.07.2016 Manual
 L-818e_2

Second edition.
Describes the Phytec BSP release phyCORE-AM335x R2
PD16.1.x with Yocto 2.0.2

24.02.2017 Manual
 L-818e_3

Third edition.
Describes the Phytec BSP release AM335x PD16.2.x with Yocto
2.1.2

Yocto AM335x BSP Manual

  PHYTEC Messtechnik GmbH 2017 L-818e_3

Document: Yocto AM335x BSP Manual
Document number: L-818e_3, February 2017

How would you improve this manual?

Did you find any mistakes in this manual? page

Submitted by:
Customer number:

Name:

Company:

Address:

Return to:
 PHYTEC Messtechnik GmbH
 Postfach 100403
 D-55135 Mainz, Germany
 Fax : +49 (6131) 9221-33

Published by

 PHYTEC Messtechnik GmbH 2017 Ordering No. L-818e_3
 Printed in Germany

	Contents

	List of Figures
	Conventions, Abbreviations and Acronyms
	1 Introduction to Yocto
	2 Introduction to the BSP
	2.1 Supported Hardware

	3 Building the BSP
	3.1 Get the BSP
	3.2 Basic Set-Up
	3.3 Finding the right Software Platform
	3.4 Selecting a Software Platform
	3.5 Starting the Build Process
	3.6 BSP Images

	4 Booting the System
	4.1 Booting from NAND Flash
	4.2 Booting from SD Card
	4.2.1 Using a single, prebuild SD Card Image
	4.2.2 Using a Script and the four individual Images (MLO, barebox.bin, linuximage and oftree file)

	4.3 Booting from UART
	4.4 Booting from SPI NOR Flash
	4.5 Booting a Bootloader from Network
	4.6 Booting the Kernel from Network
	4.6.1 Development Host Preparations
	4.6.2 Preparations on the Embedded Board
	4.6.3 Booting the Embedded Board

	4.7 Custom Boot Setup

	5 Updating the Software
	5.1 Updating from Network
	5.1.1 Updating NAND Flash from Network
	5.1.2 Updating SPI NOR Flash from Network

	5.2 Updating from SD Card
	5.2.1 Updating NAND Flash from SD Card
	5.2.2 Updating SPI NOR Flash from SD Card

	5.3 Updating from USB Flash Drive
	5.3.1 Updating NAND Flash from USB Flash Drive
	5.3.2 Updating SPI NOR Flash from USB Flash Drive

	5.4 Troubleshooting NAND Flash Update
	5.4.1 Updating from BSP-Yocto-AM335x-PD15.x.x or BSP-Yocto-phyCORE-AM335x-R2-PD16.1.x
	5.4.2 Updating from a PTXdist BSP

	6 Device Tree (DT)
	6.1 Introduction
	6.2 Phytec AM335x BSP Device Tree Concept
	6.2.1 Basic DT Structure
	6.2.2 Expansion Boards and Displays
	6.2.3 Switching Expansion Boards and Displays
	6.2.4 Handle the Different Displays
	6.2.5 Pre-Bootloader's DT Handling
	6.2.6 Bootloader's DT Modifications

	7 Accessing Peripherals
	7.1 AM335x Pin Muxing
	7.2 Serial TTYs
	7.2.1 RS-485

	7.3 Network
	7.4 CAN Bus
	7.5 MMC/SD Card
	7.6 NAND Flash
	7.7 GPIOs
	7.7.1 Keys
	7.7.2 LEDs

	7.8 SPI Master
	7.9 I²C Bus
	7.9.1 EEPROM
	7.9.2 RTC
	7.9.3 Capacitive Touchscreen
	7.9.4 Temperature Sensor

	7.10 USB Host Controller
	7.11 USB OTG
	7.11.1 USB Device

	7.12 Audio
	7.12.1 Audio Sources and Sinks
	7.12.2 Playback
	7.12.3 Capture
	7.12.4 Texas Instruments TLV320AIC3007 (phyBOARD-Wega)
	7.12.5 Wolfson WM8974 (phyCORE-AM335x Carrier Board - PCM-953)

	7.13 Framebuffer
	7.13.1 Backlight Control
	7.13.2 Resistive Touchscreens

	7.14 Watchdog
	7.14.1 Watchdog Support in the Barebox Bootloader
	7.14.2 Watchdog Support in the Linux Kernel
	7.14.3 Watchdog Support in systemd

	7.15 WLAN Modules
	7.15.1 Supported Wi-Fi Modules and Software used
	7.15.2 Enable Wi-Fi Expansion Boards
	7.15.3 Calibration

	7.16 Power Management
	7.16.1 CPU Core Frequency Scaling
	7.16.2 Power Saving Modes
	7.16.2.1 Standby
	7.16.2.2 Deep Sleep

	8 Customizing the BSP
	8.1 Changing MTD Partitions

	9 Revision History

