
11/2/2018 CS 122a Lab 4

http://www.cs.ucr.edu/~jtarango/cs122a_lab4.html 1/6

Joseph Tarango
 Department of Computer Science and Engineering

 Bourns College of Engineering
 University of California, Riverside

Home
 CS122A | Syllabus 

 Intro to FPGAs | Basics of VHDL | Intro to Xilinx | Turnin 
 Lab 1 | Lab 2 | Lab 3 | Lab 4 | Lab 5 | Project

Lab 4 : Video Graphics Array and Image Buffer

Introduction

The Video Graphics Array (VGA) protocol is a simple protocol for displaying graphics to a CRT and/or most LCD computer displays. The protocol involves 
screen and using two signals called hsync and vsync to synchronize the exact location on the screen where cursor is ready to draw. The user guide shows the tec
of how the signals are generated for the VGA protocol. You will have to read the Xilinx Spartan-3E user guide pages to be more familiar with what you are wo
this lab. VGA timing information can be found at VGA Timing and a VGA resolution calculator can be found at VGA to RGB. 

  
The FPGA board comes with a standard VGA connector and use five signals to communicate with the display. The signals are hsync, vsync, red, green, and blu
three signals, we can successfully generate eight different colors, which is admittedly somewhat limiting, but useful for instructional purposes.

  
A VGA Driver is typically nothing more than some logic that drives horizontal and vertical sync signals on and off so the scan gun behind your monitor knows
shooting the next row or column.

  

 Figure: Shows the timing diagram of hsync.
 
The timing table for the horizontal sync is shown in the figure below (you will see later that the vertical sync works exactly the same).

  

http://www.facebook.com/joseph.d.tarango
http://www.cs.ucr.edu/
http://www.engr.ucr.edu/
http://www.ucr.edu/
http://www.cs.ucr.edu/~jtarango/index.html
http://www.cs.ucr.edu/~jtarango/cs122a.html
http://www.cs.ucr.edu/~jtarango/cs122a/syllabus.pdf
http://www.cs.ucr.edu/~jtarango/cs122a_intro_to_fpgas.html
http://www.cs.ucr.edu/~jtarango/cs122a_basics_of_vhdl.html
http://www.cs.ucr.edu/~jtarango/cs122a_intro_to_xilinx.html
http://www.cs.ucr.edu/~jtarango/cs122a_turnin.html
http://www.cs.ucr.edu/~jtarango/cs122a_lab1.html
http://www.cs.ucr.edu/~jtarango/cs122a_lab2.html
http://www.cs.ucr.edu/~jtarango/cs122a_lab3.html
http://www.cs.ucr.edu/~jtarango/cs122a_lab4.html
http://www.cs.ucr.edu/~jtarango/cs122a_lab5.html
http://www.cs.ucr.edu/~jtarango/cs122a_project.html
http://www.epanorama.net/documents/pc/vga_timing.html
http://www.epanorama.net/faq/vga2rgb/calc.html


11/2/2018 CS 122a Lab 4

http://www.cs.ucr.edu/~jtarango/cs122a_lab4.html 2/6

 Figure: Shows the timing table for hsync.
 
At the start of a line, the horizontal sync signal drops to a logical low for a certain amount of time. The horizontal sync signal then gets pulsed to a logical high
point, the VGA scan gun is not ready to draw onto the screen; this is called the front porch. After a specified front porch period, the screen is ready to display o
The horizontal sync allows for 640 distinct pixels to be displayed before going into the back porch stage. In the back porch stage, the VGA scan gun has actual
viewable portion of the screen, and cannot paint to the screen. Finally, the pulse is dropped again, and the process is repeated.

  
Your first (and most difficult) task will be to capture the VGA Driver behavior as sequential logic. Before we go into details, shown below is a block diagram o
Driver component you will be designing. The inputs into the VGA Driver will be a clock and reset. The clock will be operating at 25 MHz, but as we learned in
lab, we can assume that we can input an exact 25MHz clock using the clock generator or DCM component. The outputs from your VGA driver will be a hsync
signals. These are single bit values. The last two outputs will hcount and vcount. hcount will be N bits wide, since we need to be able to count to at least 800 fo
of display information. Similarly, vcount will be N bits. Both hsync and vsync, you need to be able to implement  timing diagram in figure below.

  

 Figure: Shows the timing diagram for hsync and vsync.
 
You'll notice several different widths specified for this timing diagram:

Tpw: Time of the pulse width: How long to keep the signal low
Ts : Time period: One complete row/column of information
Tdisp : Time of Display: This is the time we can actually display information
Tfp: Time front porch: The amount of time for the front porch
Tbp: Time back porch: The amount of time for the back porch

Both the horizontal and vertical sync signals capture the same timing model, the only difference being the lengths of each of the pulse width, front porch, back 
time, etc. You can find the exact timings for each signal in the Spartan 3E Users Manual.

  
You will also need to maintain counters for both the vertical and horizontal count, because these are what actually allow other components to display informati
time. For instance, if your VGA driver gave an hcount = 500, and vcount = 400, another component could color that appropriate pixel.

  
So how do we actually model this component using the techniques you have learned in class? Well, first you need to decide whether you can capture the behav
HLSM, FSM, or combinational logic. Can the VGA display be captured with one state machine, multiple state machines? What's easier? This lab will be the fir
basically need to make all the design decisions. The hardest part of this lab will be coming up with design on paper. Translating your design to VHDL will be th
 
Note: VGA pixels must be set to black outside the coloring region, if you fail to do so the driver may not work.

Part 1 - Design a Synchronous Counters

 Figure: Shows a high-level view of the first VGA driver to create.
 
Inputs: Clock, Reset, Enable

 Outputs: Hsync, Vsync, Hcount, Vcount
  

Note: Timing for 640 by 480 VGA display. The horizontal counter is the fast counter and the vertical counter is the slower counter.
  



11/2/2018 CS 122a Lab 4

http://www.cs.ucr.edu/~jtarango/cs122a_lab4.html 3/6

 Figure: Shows how hcount and vcount correspond to the screen.
 
For this lab, you will allow several methods: behavioral by FSM or structural using counters and a datapath.

  
Method 1: Single Behavioral FSM

  
Constants for Horizontal Synchronization

H_PIXELS  = 640
H_SYNC_PULSE_WIDTH = 96
H_FRONT_PORCH_WIDTH = 16
H_BACK_PORCH_WIDTH = 48
H_POLARITY = 0

Note:
 The horizontal increment increases by one when is exclusively less than (H_PIXELS + H_FRONT_PORCH_WIDTH + H_SYNC_PULSE_WIDTH +

H_BACK_PORCH_WIDTH), otherwise reset to zero.
  

The horizontal sync should be low when (horizontal increment is exclusively less than H_PIXELS + H_FRONT_PORCH_WIDTH + H_SYNC_PULSE
and (horizontal increment is greater than or equal to H_PIXELS + H_FRONT_PORCH_WIDTH), when others it is high.

Constants for Vertical Synchronization

V_PIXELS  = 480
V_SYNC_PULSE_WIDTH = 2
V_FRONT_PORCH_WIDTH = 11
V_BACK_PORCH_WIDTH = 31
V_POLARITY = 0

Note: The vertical increment increases by one when the horizontal increment reset to zero and vertical increment is exclusively less than (V_PIXELS +
V_FRONT_PORCH_WIDTH + V_SYNC_PULSE_WIDTH + V_BACK_PORCH_WIDTH), otherwise reset to zero.

  
The vertival sync should be low when (vertical increment is exclusively less or equal than H_PIXELS + H_FRONT_PORCH_WIDTH +
H_SYNC_PULSE_WIDTH) and (vertical increment is greater than or equal to H_PIXELS + H_FRONT_PORCH_WIDTH), when others it is high.

 
Method 2: Mini-Timer Circuits

  
VGA protocol in VHDL is simply a timer circuit with an FSM. In fact, you should have implement the VGA protocol in lab 1. The output of the faster running
hsync and the one of the slower running timer is for vsync. The counter value from the faster running timer when valid signal is high is the double of the horizo
inside the display time (the counter counts up to 1280), and the counter from the slower running timer is for vertical. To make the counter from the faster timer 
horizontal position, we can divide the counter by 2 (which is simply ignore the last bit of the counter).

  
If you designed the VGA protocol correctly in lab 1, the remaining step is to create a second syncfsm. Remember in syncfsm, we had {96, 48, 640, 16} each m
syncfsm2, you will use {2, 33, 480, 10} each minus one. The reasoning for this is because we want the next state at the values not lagging behind by one. It is r
start using generics when you can because the generality allows for portability and core re-use.

  



11/2/2018 CS 122a Lab 4

http://www.cs.ucr.edu/~jtarango/cs122a_lab4.html 4/6

Figure: Shows block diagram of VGA driver using Mini-Timer Circuits. The only important outputs for this diagram are hsync, hcount, vsync, and vcount; th
discarded by port mapping them to open in VHDL.

 
 
When Completed

 A test bench check is not required, however it would if you design a test bench to test your VGA syncs operate correctly before you. If you ask the TA later on 
download phase why your VGA component isn't working, we will first ask to see your test bench to verify you have the correct behavior. Here is a sample test 
vga_tb.vhdl

Part 2 - TV Bars

 
Figure: TV bars

  
The next part of the lab will be simulate colored bars on your VGA monitor to see if everything works correctly. In order to do this, you are going to include yo
in a higher level component since at this point, we have no way to actually output color information. Recall your VGA driver only outputs horizontal and vertic
hsync and vsync signals. To create the color illusion, divide the  The bars component has two inputs for horizontal and vertical counters (which will come from
driver). The bars component then outputs three signals: a red, green, and blue signal.

  

http://www.cs.ucr.edu/~jtarango/cs122a/vga_tb.vhdl


11/2/2018 CS 122a Lab 4

http://www.cs.ucr.edu/~jtarango/cs122a_lab4.html 5/6

 Figure: RGB Code Table.
  

You will output these signals directly out of your high level component which encapsulates your VGA driver and the bars components. With RGB, we can hav
colored states so divide the horizontal pixels into 8 parts from left to right with each color section. Each color section will have a unique RGB setting correspon
horizontal count range. As a reminder, you should only write the color value when you are within the valid hcount and vcount range, otherwise you might get a
screen (this means the VGA pixel mist be "black" during the other regions).

  

 Figure: TV bars Block Diagram
  

Inputs: Clock, Reset, Enable
 Outputs: Hsync, Vsync, R, G, B

  
Note: Do not forget, the VGA is based on a 25mhz, so once again use the Xilinx DCM or Clock Generator component!

  
Download your design to the board, taking into account the proper pins for the onboard clock, and VGA (see the user guide).

Part 3 - BRAM Image

Now that you have some basic knowledge of how the VGA component works and how to use the hcount and vcount signals to our advantage, lets make a sligh
complicated design. In this part, you will a Block RAM (BRAM) to draw a image of your choosing. BRAMs are configurable memory unit that has configurab
latency and ports. We will use the BRAM to store an image of your choosing. The image can be small, maybe about 100 pixels wide and in height, although yo
whatever you want. Google Images has lots of pictures if you search and do not use colored bars, noise, or other non-trivial designs...

  
A nice way to access the memory is take advantage of the hcount and vcount signals generated by the VGA component, and concatenate the two signals into on
address which will address the BRAM with your name in it. For example, if you wanted to put your image in the top left corner, and you concatenate hcount an
together, you will address the 0th element in memory, which is exactly what you wanted. Placing your image in the middle of the screen works the same way, b
have to do a few other computations to generate your address. Think about it a bit before doing anything else. You can use a sample memory.vhdl or generate y
BRAM, just select RAMB16_S1 in the IPCore Generator. Also here is an example of a checkerboard (checkerboard.vhdl).

  
Note: It might be to your advantage to write a small script that converts a simple image you get off the internet to the BRAM format. Then, you can just plug th
contents into your code and it should work just fine Perl and Python should have some utilities to read an image, although you are free to use whatever you wan
Recommended C++ program steps:

 1. EasyBMP to data structure then to .coe format
 Read the images color channels using the EasyBMP library and put values into a data structure. The libraries, documentation, and a example for EasyBMP is p

EasyBMP_1.06.zip
 EasyBMP_Documentation_1.06.00.zip

 BMP_Image_Parce_to_RGB.cpp
  

Xilinx provides a library of pre-made components for us to use; one such component is the Block RAM. Add a BRAM to your design by selecting New Source
Generator). Select Memories>RAMS & ROMS>Block RAM Generator. A configuration manager will open to allow you to customize the BRAM component. 
select 'single port ROM' as the memory type. You should configure the depth (number of addresses) and width (number of RGB value bits) appropriately for th
quality that you want.

  
Inside of the BRAM configuration wizard you must specify a .coe file to load the memory with. The .coe files specifies the contents of your memory (your ima
helpful to write yourself a script program that converts a bitmap image file into a .coe file. A nice bitmap (BMP) image processing library for C++ is EasyBMP
 
An example .coe file for a 2x2 pixel image would resemble the test below. The first two lines must be copied exactly. The following lines specify the value of e
numerical order starting with 0.

http://www.cs.ucr.edu/~jtarango/cs122a/code/memory.vhdl
http://www.cs.ucr.edu/~jtarango/cs122a/code/checkerboard.vhdl
http://easybmp.sourceforge.net/
http://www.cs.ucr.edu/~jtarango/cs122a/code/EasyBMP_1.06.zip
http://www.cs.ucr.edu/~jtarango/cs122a/code/EasyBMP_Documentation_1.06.00.zip
http://www.cs.ucr.edu/~jtarango/cs122a/code/BMP_Image_Parce_to_RGB.cpp
http://en.wikipedia.org/wiki/BMP_file_format


11/2/2018 CS 122a Lab 4

http://www.cs.ucr.edu/~jtarango/cs122a_lab4.html 6/6

Memory_initialization_radix=2;
 Memory_initialization_vector=

 00,
 00,
 01,
 01;

 
Once you have configured the BRAM, you can view the instantiation template in ISE to add the component to your top-level design. The BRAM should have 3
correctly generated: clock, input address, and data output. The functionality of the BRAM is the data output will reflect the value found at the address input afte
latency.

Extra Credit

  

   
 

Make an animated character by storing 2 or more images and alternating between them. For even more bonus credit, make you character move across the scree
walking or running, for example).

 OR
 Make a screen saver, where your image moves completely around the screen in a bouncing manner. For even more bonus credit, have several images bouncing

and the screen boundaries.
 OR

 Make the character change directions as the bounce from the boundaries. You can do this by reversing the order you read the image. For even more bonus credi
more characters do this across the screen taking into account when the collide with each other.

 OR
 Become more creative and attempt to use this sync_ram.vhdl with some of the ideas above!

 Here is the test bench sync_ramtb.vhdl

http://www.cs.ucr.edu/~jtarango/cs122a/code/sync_ram.vhdl
http://www.cs.ucr.edu/~jtarango/cs122a/code/sync_ramtb.vhdl

